用两种方法计算 (3x/x-2 - x/x+2)* x的平方-4/x
4个回答
2013-04-02
展开全部
解:(1)原式={[3x(x+2)-x(x-2)]/(x+2)(x-2)}*(x+2)(x-2)/x =3(x+2)-(x-2) =2x+8(2)原式=[3x/(x-2)]*(x+2)(x-2)/x-[x/(x+2)]*(x+2)(x-2)/x =3(x+2)-(x-2) =2x+8
展开全部
(1)(3x/x-2 - x/x+2)* x的平方-4/x
=[3x(x+2)-x(x-2)](x^2-4)/(x^-4)x
=(3x^2+6x-x^2+2x)/x
=2x+8
(2)[3x(x^2-4)/(x-2) - x(x^2-4)/(x+2)]/x
=x[3(x^2-4)/(x-2) -x(x^2-4)/(x+2)]/x
=3(x+2)-(x-2)
=2x+8
=[3x(x+2)-x(x-2)](x^2-4)/(x^-4)x
=(3x^2+6x-x^2+2x)/x
=2x+8
(2)[3x(x^2-4)/(x-2) - x(x^2-4)/(x+2)]/x
=x[3(x^2-4)/(x-2) -x(x^2-4)/(x+2)]/x
=3(x+2)-(x-2)
=2x+8
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
[3x/(x-2)-x/(x+2) ]*(x²-4)/x 乘法分配律 (a+b)*c=ac+bc
=[3x/(x-2)]*(x²-4)/x-[x/(x+2) ]*(x²-4)/x
=3(x+2)-(x-2)
=2x+8
[3x/(x-2)-x(x+2) ]*(x²-4)/x 通分
={[3x(x+2)-x(x-2)]/(x+2)(x-2)}*(x²-4)/x
=[(3x²+6x-x²+2x)/(x²-4)]*(x²-4)/x
=2x+8
=[3x/(x-2)]*(x²-4)/x-[x/(x+2) ]*(x²-4)/x
=3(x+2)-(x-2)
=2x+8
[3x/(x-2)-x(x+2) ]*(x²-4)/x 通分
={[3x(x+2)-x(x-2)]/(x+2)(x-2)}*(x²-4)/x
=[(3x²+6x-x²+2x)/(x²-4)]*(x²-4)/x
=2x+8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-04-02
展开全部
第一种,直接按顺序通分计算 第二种,先提公因式再算括号里的最后承开
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询