求解初一数学题,急啊!要求有过程!
若非零实数a、b(a不等于b)满足a^2-a+2007=0,b^2-b+2007=0,则1/a+1/b=_...
若非零实数a、b(a不等于b)满足a^2-a+2007=0,b^2-b+2007=0,则1/a+1/b=_
展开
6个回答
展开全部
考点:根与系数的关系;一元二次方程的解.
分析:根据已知将两式相加减,得出a+b=1,ab=2007,根据1a+1b=a+bab,就可以求出代数式的值.
解答:解:∵若非零实数a,b(a≠b)满足a2-a+2007=0①,b2-b+2007=0②,
①-②得(a-b)(a+b-1)=0,
∵a≠b,
∴a+b=1,
①+②(a+b)2-2ab-(a+b)+4014=0,
∴a+b=1,ab=2007,
∴1a+1b=a+bab=1/2007.
故填空答案为1/2007.
点评:首先根据两个方程的共同特点,可以把它们相加减,得出ab=2007,a+b=1进而求出是解题关键.
分析:根据已知将两式相加减,得出a+b=1,ab=2007,根据1a+1b=a+bab,就可以求出代数式的值.
解答:解:∵若非零实数a,b(a≠b)满足a2-a+2007=0①,b2-b+2007=0②,
①-②得(a-b)(a+b-1)=0,
∵a≠b,
∴a+b=1,
①+②(a+b)2-2ab-(a+b)+4014=0,
∴a+b=1,ab=2007,
∴1a+1b=a+bab=1/2007.
故填空答案为1/2007.
点评:首先根据两个方程的共同特点,可以把它们相加减,得出ab=2007,a+b=1进而求出是解题关键.
展开全部
∵a^2-a+2007=0,b^2-b+2007=0
∴将a、b视为
x²-x+2007=0的两根
∵方程二次项系数a1=1
一次项系数b1=-1
常数项c1=2007
所以两实根a+b=-b/a=1
a*b=c/a=2007
∴1/a+1/b=(a+b)/ab
=1/2007
∴将a、b视为
x²-x+2007=0的两根
∵方程二次项系数a1=1
一次项系数b1=-1
常数项c1=2007
所以两实根a+b=-b/a=1
a*b=c/a=2007
∴1/a+1/b=(a+b)/ab
=1/2007
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:∵若非零实数a,b(a≠b)满足a2-a+2007=0①,b2-b+2007=0②,
①-②得(a-b)(a+b-1)=0,
∵a≠b,
∴a+b=1,
①+②(a+b)2-2ab-(a+b)+4014=0,
∴a+b=1,ab=2007,
∴1a+1b=a+bab=1/2007.
故填空答案为1/2007.
①-②得(a-b)(a+b-1)=0,
∵a≠b,
∴a+b=1,
①+②(a+b)2-2ab-(a+b)+4014=0,
∴a+b=1,ab=2007,
∴1a+1b=a+bab=1/2007.
故填空答案为1/2007.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a^2-a+2007=0,b^2-b+2007=0不可能有实数满足这两个式子是不是a^2-a-2007=0,b^2-b-2007=0?如果是则a≠b所以a和b是方程x^2-x-2007=0的两个根所以由韦达定理a+b=1,ab=-2007所以1/a+1/b=(a+b)/ab=-1/2007
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由题意知a、b是方程x²-x+2007=0的两个根
∴ab=2007,a+b=1
∴1/a+1/b=(a+b)/(ab)=1/2007
∴ab=2007,a+b=1
∴1/a+1/b=(a+b)/(ab)=1/2007
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询