
展开全部
我正好前几天收藏到了,我们老师帮找的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.集合、简易逻辑
理解集合、子集、补集、交集、并集的概念;
了解空集和全集的意义;
了解属于、包含、相等关系的意义;
掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
理解逻辑联结词"或"、"且"、"非"的含义;
理解四种命题及其相互关系;掌握充要条件的意义。
2.函数
了解映射的概念,在此基础上加深对函数概念的理解。
了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法。
了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数。
理解分数指数的概念,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质。
理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图象和性质。
能够运用函数的性质、指数函数、对数函数的性质解决某些简单的实际问题。
3.不等式
理解不等式的性质及其证明。
掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
掌握分析法、综合法、比较法证明简单的不等式。
掌握二次不等式,简单的绝对值不等式和简单的分式不等式的解法。
理解不等式:|a|-|b|≤|a+b|≤|a|+|b|。
4.三角函数(46课时)
理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。
掌握任意角的正弦、余弦、正切的定义,
并会利用单位圆中的三角函数线表示正弦、余弦和正切。
了解任意角的余切、正割、余割的定义;
掌握同角三角函数的基本关系式:
掌握正弦、余弦的诱导公式。
掌握两角和与两角差的正弦、余弦、正切公式;
掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力。
能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆)。
了解周期函数与最小正周期的意义;
了解奇偶函数的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质;以及简化这些函数图象的绘制过程;
会用"五点法"画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。
会由已知三角函数值求角,并会用符号 arcsin x、arccos x、arctan x表示。
掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。
5.平面向量
理解向量的概念,掌握向量的几何表示,
了解共线向量的概念。
掌握向量的加法与减法。
掌握实数与向量的积,理解两个向量共线的充要条件。
了解平面向量的基本定理,
理解平面向量的坐标的概念,
掌握平面向量的坐标运算。
掌握平面向量的数量积及其几何意义,
了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
掌握平面两点间的距离公式,
掌握线段的定比分点和中点坐标公式,并且能熟练运用;
掌握平移公式。
6.数列
理解数列的概念,
了解数列通项公式的意义;
了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
理解等差数列的概念,
掌握等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题。
理解等比数列的概念
掌握等比数列的通项公式与前 n 项和公式,并能解决简单的实际问题。
7.直线和圆的方程
理解直线的倾斜角和斜率的概念,
掌握过两点的直线的斜率公式,
掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。
掌握两条直线平行与垂直的条件,
掌握两条直线所成的角和点到直线的距离公式;
能够根据直线的方程判断两条直线的位置关系。
会用二元一次不等式表示平面区域。
了解简单的线性规划问题,了解线性规划的意义,并会简单应用。
掌握圆的标准方程和一般方程,
了解参数方程的概念,理解圆的参数方程。
8.圆锥曲线方程
掌握椭圆的定义、标准方程和椭圆的简单几何性质;
理解椭圆的参数方程。
掌握双曲线的定义、标准方程和双曲线的简单几何性质。
掌握抛物线的定义、标准方程和抛物线的简单几何性质。
9.直线、平面、简单几何体
掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;
能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
掌握两条直线平行与垂直的判定定理和性质定理;
掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会利用给出的公垂线计算距离)。
掌握直线和平面平行的判定定理和性质定理;
掌握直线和平面垂直的判定定理和性质定理;
掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念;
了解三垂线定理及其逆定理。
掌握两个平面平行的判定定理和性质定理;
掌握二面角、二面角的平面角、两个平行平面间的距离的概念;
掌握两个平面垂直的判定定理和性质定理。
进一步熟悉反证法,会用反证法证明简单的问题。
了解多面体的概念,了解凸多面体的概念。
了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。
了解正多面体的概念,了解多面体的欧拉公式。
了解球的概念,掌握球的性质,掌握球的表面积和体积公式。
10.排列、组合、二项式定理
掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
11.概率
了解随机事件的统计规律性和随机事件概率的意义。
了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率。
了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率。
会计算事件在 n 次独立重复试验中恰好发生 k 次的概率。
选修Ⅰ
1.统计
了解随机抽样、分层抽样的意义,会用它们对简单实际问题进行抽样;
会用样本频率分布估计总体分布,
会利用样本估计总体期望值和方差,体会如何从数据中提取信息并作出统计推断。
2.导数
理解导数是平均变化率的极限;理解导数的几何意义。
掌握函数 的导数公式,会求多项式函数的导数。
理解极大值、极小值、最大值、最小值的概念,
会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。
选修Ⅱ
1.概率与统计
了解离散型随机变量的意义,
会求出某些简单的离散型随机变量的分布列。
了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。
会用样本频率分布估计总体分布。
了解正态分布的意义及主要性质。
了解线性回归的方法和简单应用。
2. 极限
理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
从数列和函数的变化趋势了解数列极限和函数极限的概念。
掌握极限的四则运算法则;会求某些数列与函数的极限。
了解连续的意义,借助几何直观理解闭区间上连续函数有最大值和最小值的性质。
3.导数
了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);
掌握函数在一点处的导数的定义和导数的几何意义;
理解导函数的概念。
熟记基本导数公式(c,xm(m为有理数), sin x, cos x, ex, ax, ln x,logax的导数);
掌握两个函数和、差、积、商的求导法则;
了解复合函数的求导法则,会求某些简单函数的导数。
会从几何直观了解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
4.数系的扩充--复数
理解复数的有关概念;
掌握复数的代数表示与几何意义。
掌握复数代数形式的运算法则,能进行复数代数形式的加、减、乘、除运算。
理解集合、子集、补集、交集、并集的概念;
了解空集和全集的意义;
了解属于、包含、相等关系的意义;
掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
理解逻辑联结词"或"、"且"、"非"的含义;
理解四种命题及其相互关系;掌握充要条件的意义。
2.函数
了解映射的概念,在此基础上加深对函数概念的理解。
了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法。
了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数。
理解分数指数的概念,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质。
理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图象和性质。
能够运用函数的性质、指数函数、对数函数的性质解决某些简单的实际问题。
3.不等式
理解不等式的性质及其证明。
掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
掌握分析法、综合法、比较法证明简单的不等式。
掌握二次不等式,简单的绝对值不等式和简单的分式不等式的解法。
理解不等式:|a|-|b|≤|a+b|≤|a|+|b|。
4.三角函数(46课时)
理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。
掌握任意角的正弦、余弦、正切的定义,
并会利用单位圆中的三角函数线表示正弦、余弦和正切。
了解任意角的余切、正割、余割的定义;
掌握同角三角函数的基本关系式:
掌握正弦、余弦的诱导公式。
掌握两角和与两角差的正弦、余弦、正切公式;
掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力。
能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆)。
了解周期函数与最小正周期的意义;
了解奇偶函数的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质;以及简化这些函数图象的绘制过程;
会用"五点法"画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。
会由已知三角函数值求角,并会用符号 arcsin x、arccos x、arctan x表示。
掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。
5.平面向量
理解向量的概念,掌握向量的几何表示,
了解共线向量的概念。
掌握向量的加法与减法。
掌握实数与向量的积,理解两个向量共线的充要条件。
了解平面向量的基本定理,
理解平面向量的坐标的概念,
掌握平面向量的坐标运算。
掌握平面向量的数量积及其几何意义,
了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
掌握平面两点间的距离公式,
掌握线段的定比分点和中点坐标公式,并且能熟练运用;
掌握平移公式。
6.数列
理解数列的概念,
了解数列通项公式的意义;
了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
理解等差数列的概念,
掌握等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题。
理解等比数列的概念
掌握等比数列的通项公式与前 n 项和公式,并能解决简单的实际问题。
7.直线和圆的方程
理解直线的倾斜角和斜率的概念,
掌握过两点的直线的斜率公式,
掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。
掌握两条直线平行与垂直的条件,
掌握两条直线所成的角和点到直线的距离公式;
能够根据直线的方程判断两条直线的位置关系。
会用二元一次不等式表示平面区域。
了解简单的线性规划问题,了解线性规划的意义,并会简单应用。
掌握圆的标准方程和一般方程,
了解参数方程的概念,理解圆的参数方程。
8.圆锥曲线方程
掌握椭圆的定义、标准方程和椭圆的简单几何性质;
理解椭圆的参数方程。
掌握双曲线的定义、标准方程和双曲线的简单几何性质。
掌握抛物线的定义、标准方程和抛物线的简单几何性质。
9.直线、平面、简单几何体
掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;
能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
掌握两条直线平行与垂直的判定定理和性质定理;
掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会利用给出的公垂线计算距离)。
掌握直线和平面平行的判定定理和性质定理;
掌握直线和平面垂直的判定定理和性质定理;
掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念;
了解三垂线定理及其逆定理。
掌握两个平面平行的判定定理和性质定理;
掌握二面角、二面角的平面角、两个平行平面间的距离的概念;
掌握两个平面垂直的判定定理和性质定理。
进一步熟悉反证法,会用反证法证明简单的问题。
了解多面体的概念,了解凸多面体的概念。
了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。
了解正多面体的概念,了解多面体的欧拉公式。
了解球的概念,掌握球的性质,掌握球的表面积和体积公式。
10.排列、组合、二项式定理
掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
11.概率
了解随机事件的统计规律性和随机事件概率的意义。
了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率。
了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率。
会计算事件在 n 次独立重复试验中恰好发生 k 次的概率。
选修Ⅰ
1.统计
了解随机抽样、分层抽样的意义,会用它们对简单实际问题进行抽样;
会用样本频率分布估计总体分布,
会利用样本估计总体期望值和方差,体会如何从数据中提取信息并作出统计推断。
2.导数
理解导数是平均变化率的极限;理解导数的几何意义。
掌握函数 的导数公式,会求多项式函数的导数。
理解极大值、极小值、最大值、最小值的概念,
会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。
选修Ⅱ
1.概率与统计
了解离散型随机变量的意义,
会求出某些简单的离散型随机变量的分布列。
了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。
会用样本频率分布估计总体分布。
了解正态分布的意义及主要性质。
了解线性回归的方法和简单应用。
2. 极限
理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
从数列和函数的变化趋势了解数列极限和函数极限的概念。
掌握极限的四则运算法则;会求某些数列与函数的极限。
了解连续的意义,借助几何直观理解闭区间上连续函数有最大值和最小值的性质。
3.导数
了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);
掌握函数在一点处的导数的定义和导数的几何意义;
理解导函数的概念。
熟记基本导数公式(c,xm(m为有理数), sin x, cos x, ex, ax, ln x,logax的导数);
掌握两个函数和、差、积、商的求导法则;
了解复合函数的求导法则,会求某些简单函数的导数。
会从几何直观了解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
4.数系的扩充--复数
理解复数的有关概念;
掌握复数的代数表示与几何意义。
掌握复数代数形式的运算法则,能进行复数代数形式的加、减、乘、除运算。
追问
我需要的是所有高中公式,不是知识点
追答
高中数学公式提升
一、集合、简易逻辑、函数
研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合B={0,|x|,y},且A=B,则x+y=
研究集合,首先必须弄清代表元素,才能理解集合的意义。已知集合M={y|y=x2 ,x∈R},N={y|y=x2+1,x∈R},求M∩N;与集合M={(x,y)|y=x2 ,x∈R},N={(x,y)|y=x2+1,x∈R}求M∩N的区别。
集合 A、B,时,你是否注意到“极端”情况:或;求集合的子集时是否忘记. 例如:对一切恒成立,求a的取植范围,你讨论了a=2的情况了吗?
对于含有n个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为 如满足条件的集合M共有多少个
解集合问题的基本工具是韦恩图; 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法?
两集合之间的关系。
(CUA)∩( CU B) = CU(A∪B) (CUA)∪( CUB) = CU(A∩B);;
10、你对映射的概念了解了吗?映射f:A→B中,A中元素的任意性和B中与它对应元素的唯一性,哪几种对应能够成映射?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一.观察法
通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x) 的值域。
点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。
解:由算术平方根的性质,知√(2-3x)≥0,
故3+√(2-3x)≥3。
∴函数的知域为 .
点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5})
二.反函数法
当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1})
三.配方法
当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域
例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]
∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]
点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})
四.判别式法
若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。
点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。
解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)
当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3
当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。
点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。
练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。
五.最值法
对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。
例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。
点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。
解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),
∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。
当x=-1时,z=-5;当x=3/2时,z=15/4。
∴函数z的值域为{z∣-5≤z≤15/4}。
点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。
练习:若√x为实数,则函数y=x2+3x-5的值域为 ( )
A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞)
(答案:D)。
六.图象法
通过观察函数的图象,运用数形结合的方法得到函数的值域。
例6求函数y=∣x+1∣+√(x-2)2 的值域。
点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。
解:原函数化为 -2x+1 (x≤1)
y= 3 (-1<x≤2)
2x-1(x>2)
它的图象如图所示。
显然函数值y≥3,所以,函数值域[3,+∞]。
点评:分段函数应注意函数的端点。利用函数的图象
求函数的值域,体现数形结合的思想。是解决问题的重要方法。
求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。
七.单调法
利用函数在给定的区间上的单调递增或单调递减求值域。
例1求函数y=4x-√1-3x(x≤1/3)的值域。
点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。
解:设f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x-√1-3x
在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}。
点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。
练习:求函数y=3+√4-x 的值域。(答案:{y|y≥3})
八.换元法
以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。
例2求函数y=x-3+√2x+1 的值域。
点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。
解:设t=√2x+1 (t≥0),则
x=1/2(t2-1)。
于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.
所以,原函数的值域为{y|y≥-7/2}。
点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。
练习:求函数y=√x-1 –x的值域。(答案:{y|y≤-3/4}
九.构造法
根据函数的结构特征,赋予几何图形,数形结合。
例3求函数y=√x2+4x+5+√x2-4x+8 的值域。
点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。
解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22
作一个长为4、宽为3的矩形ABCD,再切割成12个单位
正方形。设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22 ,
KC=√(x+2)2+1 。
由三角形三边关系知,AK+KC≥AC=5。当A、K、C三点共
线时取等号。
∴原函数的知域为{y|y≥5}。
点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。
练习:求函数y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2})
十.比例法
对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。
例4已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。
点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。
解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)
∴x=3+4k,y=1+3k,
∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。
当k=-3/5时,x=3/5,y=-4/5时,zmin=1。
函数的值域为{z|z≥1}.
点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。
练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1})
十一.利用多项式的除法
例5求函数y=(3x+2)/(x+1)的值域。
点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和。
解:y=(3x+2)/(x+1)=3-1/(x+1)。
∵1/(x+1)≠0,故y≠3。
∴函数y的值域为y≠3的一切实数。
点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。
练习:求函数y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2)
十二.不等式法
例6求函数Y=3x/(3x+1)的值域。
点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式。
解:易求得原函数的反函数为y=log3[x/(1-x)],
由对数函数的定义知 x/(1-x)>0
1-x≠0
解得,0<x<1。
∴函数的值域(0,1)。
点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域。不等式法是重要的解题工具,它的应用非常广泛。是数学解题的方法之一。
以下供练习选用:求下列函数的值域
1.Y=√(15-4x)+2x-5;({y|y≤3})
2.Y=2x/(2x-1)。 (y>1或y<0)
注意变量哦
通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x) 的值域。
点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。
解:由算术平方根的性质,知√(2-3x)≥0,
故3+√(2-3x)≥3。
∴函数的知域为 .
点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5})
二.反函数法
当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1})
三.配方法
当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域
例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]
∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]
点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})
四.判别式法
若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。
点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。
解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)
当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3
当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。
点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。
练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。
五.最值法
对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。
例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。
点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。
解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),
∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。
当x=-1时,z=-5;当x=3/2时,z=15/4。
∴函数z的值域为{z∣-5≤z≤15/4}。
点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。
练习:若√x为实数,则函数y=x2+3x-5的值域为 ( )
A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞)
(答案:D)。
六.图象法
通过观察函数的图象,运用数形结合的方法得到函数的值域。
例6求函数y=∣x+1∣+√(x-2)2 的值域。
点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。
解:原函数化为 -2x+1 (x≤1)
y= 3 (-1<x≤2)
2x-1(x>2)
它的图象如图所示。
显然函数值y≥3,所以,函数值域[3,+∞]。
点评:分段函数应注意函数的端点。利用函数的图象
求函数的值域,体现数形结合的思想。是解决问题的重要方法。
求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。
七.单调法
利用函数在给定的区间上的单调递增或单调递减求值域。
例1求函数y=4x-√1-3x(x≤1/3)的值域。
点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。
解:设f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x-√1-3x
在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}。
点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。
练习:求函数y=3+√4-x 的值域。(答案:{y|y≥3})
八.换元法
以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。
例2求函数y=x-3+√2x+1 的值域。
点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。
解:设t=√2x+1 (t≥0),则
x=1/2(t2-1)。
于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.
所以,原函数的值域为{y|y≥-7/2}。
点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。
练习:求函数y=√x-1 –x的值域。(答案:{y|y≤-3/4}
九.构造法
根据函数的结构特征,赋予几何图形,数形结合。
例3求函数y=√x2+4x+5+√x2-4x+8 的值域。
点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。
解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22
作一个长为4、宽为3的矩形ABCD,再切割成12个单位
正方形。设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22 ,
KC=√(x+2)2+1 。
由三角形三边关系知,AK+KC≥AC=5。当A、K、C三点共
线时取等号。
∴原函数的知域为{y|y≥5}。
点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。
练习:求函数y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2})
十.比例法
对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。
例4已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。
点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。
解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)
∴x=3+4k,y=1+3k,
∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。
当k=-3/5时,x=3/5,y=-4/5时,zmin=1。
函数的值域为{z|z≥1}.
点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。
练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1})
十一.利用多项式的除法
例5求函数y=(3x+2)/(x+1)的值域。
点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和。
解:y=(3x+2)/(x+1)=3-1/(x+1)。
∵1/(x+1)≠0,故y≠3。
∴函数y的值域为y≠3的一切实数。
点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。
练习:求函数y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2)
十二.不等式法
例6求函数Y=3x/(3x+1)的值域。
点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式。
解:易求得原函数的反函数为y=log3[x/(1-x)],
由对数函数的定义知 x/(1-x)>0
1-x≠0
解得,0<x<1。
∴函数的值域(0,1)。
点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域。不等式法是重要的解题工具,它的应用非常广泛。是数学解题的方法之一。
以下供练习选用:求下列函数的值域
1.Y=√(15-4x)+2x-5;({y|y≤3})
2.Y=2x/(2x-1)。 (y>1或y<0)
注意变量哦
追问
我需要的所有的高中公式
追答
对数的性质及推导
用^表示乘方,用log(a)(b)表示以a为底,b的对数
*表示乘号,/表示除号
定义式:
若a^n=b(a>0且a≠1)
则n=log(a)(b)
基本性质:
1.a^(log(a)(b))=b
2.log(a)(MN)=log(a)(M)+log(a)(N);
3.log(a)(M/N)=log(a)(M)-log(a)(N);
4.log(a)(M^n)=nlog(a)(M)
推导
1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)
2.
MN=M*N
由基本性质1(换掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)]
由指数的性质
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(MN) = log(a)(M) + log(a)(N)
3.与2类似处理
MN=M/N
由基本性质1(换掉M和N)
a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)]
由指数的性质
a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M/N) = log(a)(M) - log(a)(N)
4.与2类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)
其他性质:
性质一:换底公式
log(a)(N)=log(b)(N) / log(b)(a)
推导如下
N = a^[log(a)(N)]
a = b^[log(b)(a)]
综合两式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
又因为N=b^[log(b)(N)]
所以
b
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询