在数列an中,已知a1=-1,且an+1=2an+3n-4(n属于N*)
1.求证:数列{an+1-an+3}是等比数列2.求数列{an}的通项公式3.求和:Sn=|a1|+|a2|+|a3|+...+|an|(n属于N*)...
1.求证:数列{an+1-an+3}是等比数列2.求数列{an}的通项公式3.求和:Sn= |a1|+ |a2|+ |a3|+...+ |an|(n属于N*)
展开
2013-04-04
展开全部
解:(Ⅰ)证明:∵an+1=2an+3n-4(n∈N*)∴当n≥2时,an=2an-1+3n-7
两式相减,得,an+1-an=2(an-an-1)+3,即,an+1-an+3=2(an-an-1+3)
∴ an+1-an+3an-an-1+3=2
∴数列{a<sub>n+1</sub>-a<sub>n</sub>+3}是公比为2的等比数列
(Ⅱ)∵数列{a<sub>n+1</sub>-a<sub>n</sub>+3}是公比为2的等比数列,且a1=-1,a2=-3
∴a2-a1+3=1∴an+1-an+3=2n-1,
an+1-an=2n-1-3
∴an+-an-1=2n-2-3
an-1-an-2=2n-3-3
…
a2-a1=20-3
∴an+1-a1= 2n-1-12-3n
∴an= 2n-1-12-3n+2;
(Ⅲ)由(Ⅱ)知,an= 2n-1-12-3n+2
∴Tn.= 20-12-3+2+ 21-12-3×2+2+ 22-12-3×3+2+…+ 2n-1-12-3n+2
= 20+21+…+2n-1-n2+2n-3n2= 12(2n-3n2-1)
两式相减,得,an+1-an=2(an-an-1)+3,即,an+1-an+3=2(an-an-1+3)
∴ an+1-an+3an-an-1+3=2
∴数列{a<sub>n+1</sub>-a<sub>n</sub>+3}是公比为2的等比数列
(Ⅱ)∵数列{a<sub>n+1</sub>-a<sub>n</sub>+3}是公比为2的等比数列,且a1=-1,a2=-3
∴a2-a1+3=1∴an+1-an+3=2n-1,
an+1-an=2n-1-3
∴an+-an-1=2n-2-3
an-1-an-2=2n-3-3
…
a2-a1=20-3
∴an+1-a1= 2n-1-12-3n
∴an= 2n-1-12-3n+2;
(Ⅲ)由(Ⅱ)知,an= 2n-1-12-3n+2
∴Tn.= 20-12-3+2+ 21-12-3×2+2+ 22-12-3×3+2+…+ 2n-1-12-3n+2
= 20+21+…+2n-1-n2+2n-3n2= 12(2n-3n2-1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询