已知三角形ABC的三个顶点的直角坐标系分别为A(3,4),B(0,0),C(c,0),若角A是钝角,则c的取值范围为多少
3个回答
展开全部
易知C点在x轴上,只要不和B点重合,A B C三点就能构成三角形。
下面求满足∠A是钝角的c的范围:
C点在B点左边时,不管c取何值,∠A均是锐角。不满足条件。
C点在B点右边时,先求出当角A是直角时C点的值,由勾股定理:BC平方-AB平方=AC平方
(AC的平方等于A点和C点在两个坐标轴向差的平方的和,表示为(c-3)^2+(4-0)^2=(c-3)^2+4^2。----(c-3)^2表示(c-3)的平方) 即,
c^2-5^2=(c-3)^2+4^2
求得c=25/3 ,
所以当∠A是钝角时,需满足:c>25/3
下面求满足∠A是钝角的c的范围:
C点在B点左边时,不管c取何值,∠A均是锐角。不满足条件。
C点在B点右边时,先求出当角A是直角时C点的值,由勾股定理:BC平方-AB平方=AC平方
(AC的平方等于A点和C点在两个坐标轴向差的平方的和,表示为(c-3)^2+(4-0)^2=(c-3)^2+4^2。----(c-3)^2表示(c-3)的平方) 即,
c^2-5^2=(c-3)^2+4^2
求得c=25/3 ,
所以当∠A是钝角时,需满足:c>25/3
展开全部
若角A是直角,则:AB²+AC²=BC²
∴(3-0)²+(4-0)²+(3-c)²+(4-0)²=(c-0)²+(0-0)²
解得:c=25/3
若角A是钝角,则c的取值范围为c>25/3.
本题还有2种情况,1、角C是钝角时,0<c<3
2、角A是钝角时,c<0
不过不是本题研究的范围。
∴(3-0)²+(4-0)²+(3-c)²+(4-0)²=(c-0)²+(0-0)²
解得:c=25/3
若角A是钝角,则c的取值范围为c>25/3.
本题还有2种情况,1、角C是钝角时,0<c<3
2、角A是钝角时,c<0
不过不是本题研究的范围。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由题意可知:
向量AB=(0,0)-(3,4)=(-3,-4)
向量AC=(c,0)-(3,4)=(c-3,-4)
那么:数量积 向量AB·向量AC=-3(c-3)+(-4)*(-4)=-3c+25
又向量AB·向量AC=|AB|*|AC|*cosA且∠A是钝角
那么:cosA<0
故有:向量AB·向量AC<0
即:-3c+25<0
解得:c>25/3
向量AB=(0,0)-(3,4)=(-3,-4)
向量AC=(c,0)-(3,4)=(c-3,-4)
那么:数量积 向量AB·向量AC=-3(c-3)+(-4)*(-4)=-3c+25
又向量AB·向量AC=|AB|*|AC|*cosA且∠A是钝角
那么:cosA<0
故有:向量AB·向量AC<0
即:-3c+25<0
解得:c>25/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询