已知函数f(x)=½x²+a㏑x (a∈R)

已知函数f(x)=½x²+a㏑x(a∈R)。(1)若f(x)在[1,e]上是增函数,求a的取值范围;(2)若1≤x≤e,证明:f(x)<三分之二x&#... 已知函数f(x)=½x²+a㏑x(a∈R)。(1)若f(x)在[1,e]上是增函数,求a的取值范围;(2)若1≤x≤e,证明:f(x)<三分之二x³ 展开
936946590
2013-04-04 · TA获得超过2.9万个赞
知道大有可为答主
回答量:4446
采纳率:83%
帮助的人:2717万
展开全部

不懂,请追问,祝愉快O(∩_∩)O~

更多追问追答
追问
这是在什么网上找到的?这个网站资料全么?
追答
菁优网,需要优点的百度一下吧,顺便采纳下,合作愉快
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
lairuoqi
2013-04-04 · TA获得超过263个赞
知道小有建树答主
回答量:190
采纳率:0%
帮助的人:136万
展开全部
1>先对函数求导f‘(x)=a/x+x, 增函数 则说明导函数在区间上大于零f'(x)>0, 所以a>=-1 且a>=-e^2, a∈[-1,infinity)
2>取差求不等式△=2x^3/3-f(x) =2x^3/3-x^2/2-alnx:
对△求导,△’=2x^2-x-a/x, 令△‘=0,方程2x^3-x^2-a=0在a>=-1时,在[1,e]上无根,即证明△在两端取值为正则结论成立
当 x=1时,△=0;当x=e时,△= 2e^3/3-a-e^2/2,当a>=-1时,△>0
所以结论成立
追问
第二问中没提到a的范围呀,“在a>=-1时,在[1,e]上无根,即证明△在两端取值为正则结论成立
当 x=1时,△=0;当x=e时,△= 2e^3/3-a-e^2/2,当a>=-1时,△>0所以结论成立”之前的理解了,但这一步有些看不懂。麻烦您了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式