高中数学必修4三角函数题

2010年的元旦,宁波从0时到24时的气温变化曲线近似地满足函数y=Asin(ωx+φ)+b(A,ω>0,|φ|≤π).从天气台得知:宁波在2010的第一天的温度为1到9... 2010年的元旦,宁波从0时到24时的气温变化曲线近似地满足函数y=Asin(ωx+φ)+b(A,ω>0,|φ|≤π).从天气台得知:宁波在2010的第一天的温度为1到9度,其中最高气温只出现在下午14时,最低气温只出现在凌晨2时。
(Ⅱ)若元旦当地,M市的气温变化曲线也近似地满足函数y=A1sin(ω1x+φ1)+b1,且气温变化也为1到9度,只不过最高气温和最低气温出现的时间都比宁波迟了四个小时.
(ⅰ)求早上七时,宁波与M市的两地温差;
(ⅱ)若同一时刻两地的温差不差过2度,我们称之为温度相近,求2010年元旦当日,宁波与M市温度相近的时长.
这题(Ⅱ)的公式不会转y-y2=4sin(y-y2=4sin(π/12*x-2/3*π )+5- 4sin(π/12*xπ)+5=4sin(π/12*x-1/3*π ) 这道公式的4sin(π/12*x-1/3*π ) 不知道怎么得来的,我只想要这道公式的变换过程,我要详细!最好详细到教小学那样的程度。谢谢!看得明白我会加分
展开
aa55zzkk
2013-04-05
知道答主
回答量:1
采纳率:0%
帮助的人:2.5万
展开全部
三角函数不管怎样y=sin(ωx+φ)的值域都在[-1,1]上,若y=Asin(ωx+φ),则值域为[-A,A]max与min为相反数,又ymax-ymin=2A∴A=4∴y=Asin(ωx+φ)值域为[-4,4]。又y=Asin(ωx+φ)+b的值域为[1,9]所以b=5。∵T/2=(14-2=)12,∴ω=π/12.令y=0则φ=π/3∴y=4sin(π/12*x-π/3 )+5 M市的照推。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式