已知函数f(x)=a^x+x-2/x+1 (a大于1),用反证法证明方程f(x)=0没有负根。
1个回答
2013-04-06
展开全部
假设f(x)=0有负数根
那么存在x<0,使a^x+(x-2)/(x+1)=0
a^x=-(x-2)/(x+1)
左边0<a^x<1
∴0<-(x-2)/(x+1)<1
解得1/2<x<2
这与假设矛盾
所以f(X)=0时没有负数根
那么存在x<0,使a^x+(x-2)/(x+1)=0
a^x=-(x-2)/(x+1)
左边0<a^x<1
∴0<-(x-2)/(x+1)<1
解得1/2<x<2
这与假设矛盾
所以f(X)=0时没有负数根
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询