已知函数f(x)=(2m-m^2+1)/(x^2+1)当m>0时,求函数的单调区间和极值
2个回答
展开全部
f(x)=(x^2+1)/(2mx-m^2+1),(x€r)
f(x)导函数f'(x)=[(x^2+1)'(2mx-m^2+1)-(x^2+1)(2mx-m^2+1)']/(2mx-m^2+1)^2
=[2x×(2mx-m^2+1)-(x^2+1)×2m]/(2mx-m^2+1)^2
=[2mx^2-(2m^2-2)x-2m]/(2mx-m^2+1)^2
令f'(x)=0,则[2mx^2-(2m^2-2)x-2m]/(2mx-m^2+1)^2=0,mx^2-(m^2-1)x-m=0
b^2-4ac=[-(m^2-1)]^2-4m×(-m)
=m^4-2m^2+1+4m^2
=(m+1)^2
∴x={-[-(m^2-1)]±√(m+1)^2}/2m
∵m>0
∴x=(m+1)/2 或x=(m^2-m-2)/2m
又∵(m+1)/2-(m^2-m-2)/2m=(m+1)/m>0
∴(m+1)/2>(m^2-m-2)/2m
当f'(x)>0时,x<(m^2-m-2)/2m,x>(m+1)/2
当f'(x)<0时,(m^2-m-2)/2m<x<(m+1)/2
f'(x)、f(x)随x的变化情况如下表
x | (-∞,(m^2-m-2)/2m) | (m^2-m-2)/2m | ((m^2-m-2)/2m,(m+1)/2) | (m+1)/2 | ((m+1)/2,+∞)
f'(x) | + | 0 | - | 0 | +
f(x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增
∴当x€(-∞,(m^2-m-2)/2m)时,f(x)单调递增
当x€((m^2-m-2)/2m,(m+1)/2),f(x)单调递减
当x€((m+1)/2,+∞)时,f(x)单调递增
∴f(x) 单调递增区间为[-∞,(m^2-m-2)/2m]或[(m+1)/2,+∞)]
f(x)单调递减区间为[^2-m-2)/2m,(m+1)/2]
当x=(m^2-m-2)/2m有极大值f((m^2-m-2)/2m)= -(m^4-2m^3+4m+4)/(4m^3+4m^2)
当x=(m+1)/2有极小值f((m+1)/2))=(m^2+2m+5)/(m+1)
f(x)导函数f'(x)=[(x^2+1)'(2mx-m^2+1)-(x^2+1)(2mx-m^2+1)']/(2mx-m^2+1)^2
=[2x×(2mx-m^2+1)-(x^2+1)×2m]/(2mx-m^2+1)^2
=[2mx^2-(2m^2-2)x-2m]/(2mx-m^2+1)^2
令f'(x)=0,则[2mx^2-(2m^2-2)x-2m]/(2mx-m^2+1)^2=0,mx^2-(m^2-1)x-m=0
b^2-4ac=[-(m^2-1)]^2-4m×(-m)
=m^4-2m^2+1+4m^2
=(m+1)^2
∴x={-[-(m^2-1)]±√(m+1)^2}/2m
∵m>0
∴x=(m+1)/2 或x=(m^2-m-2)/2m
又∵(m+1)/2-(m^2-m-2)/2m=(m+1)/m>0
∴(m+1)/2>(m^2-m-2)/2m
当f'(x)>0时,x<(m^2-m-2)/2m,x>(m+1)/2
当f'(x)<0时,(m^2-m-2)/2m<x<(m+1)/2
f'(x)、f(x)随x的变化情况如下表
x | (-∞,(m^2-m-2)/2m) | (m^2-m-2)/2m | ((m^2-m-2)/2m,(m+1)/2) | (m+1)/2 | ((m+1)/2,+∞)
f'(x) | + | 0 | - | 0 | +
f(x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增
∴当x€(-∞,(m^2-m-2)/2m)时,f(x)单调递增
当x€((m^2-m-2)/2m,(m+1)/2),f(x)单调递减
当x€((m+1)/2,+∞)时,f(x)单调递增
∴f(x) 单调递增区间为[-∞,(m^2-m-2)/2m]或[(m+1)/2,+∞)]
f(x)单调递减区间为[^2-m-2)/2m,(m+1)/2]
当x=(m^2-m-2)/2m有极大值f((m^2-m-2)/2m)= -(m^4-2m^3+4m+4)/(4m^3+4m^2)
当x=(m+1)/2有极小值f((m+1)/2))=(m^2+2m+5)/(m+1)
追问
分子分母倒了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询