已知z,w为复数,(1+3i)z为纯虚数,w=z/2+i,且|w|=5倍根号2,求w
4个回答
展开全部
设(1+3i)z=bi,则z=(bi)/(1+3i),w=z/(2+i)=(bi)/[(1+3i)(2+i)],|w|=|(bi)/[(1+3i)(2+i)]|=|b|/[√10×√5]=5√2,解得|b|=50,则:w=(bi)/[(1+3i)(2+i)]=±(1-i)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-04-06
展开全部
设(1+3i)z=mi,z=(-3m+mi)/10,w=(-3m+mi)/20+i=(-3m+(m+20)i)/20,|w|=5倍根号2;求出m,可得w
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-04-06
展开全部
解:设W=a+bi,∵(1+3i)Z为纯虚数,∴(1+3i)(a+bi)=(a-3b)+(3a+3b)i中a-3b=0,∴a=3b
W=3b+bi,且|w|=5倍根号2,(3b)平方+(b)平方=50,即b的平方=5,∴W=3倍根号5+3倍根号5i
或w=-3倍根号5-3倍根号5i
W=3b+bi,且|w|=5倍根号2,(3b)平方+(b)平方=50,即b的平方=5,∴W=3倍根号5+3倍根号5i
或w=-3倍根号5-3倍根号5i
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询