2021-07-19 · 百度认证:陕西新华电脑软件培训学校官方账号
陕西新华电脑学校
陕西新华电脑软学校位于西咸新区秦汉新城兰池二路东段,隶属于新华教育集团,是经陕西省人力资源和社会保障厅批准成立的一所大型互联网教育学校,是陕西省专业的互联网人才培养基地,交通便利,学风醇厚
向TA提问
关注
展开全部
云计算与大数据概述
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务。它意味着计算能力也可作为一种商品通过互联网进行流通。
大数据(big data),或称海量数据,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
大数据管理,分布式进行文件系统,如Hadoop、Mapreduce数据分割与访问执行;同时SQL支持,以Hive+HADOOP为代表的SQL界面支持,在大数据技术上用云计算构建下一代数据仓库成为热门话题。从系统需求来看,大数据的架构对系统提出了新的挑战:
1、集成度更高。一个标准机箱最大限度完成特定任务。
2、配置更合理、速度更快。存储、控制器、I/O通道、内存、CPU、网络均衡设计,针对数据仓库访问最优设计,比传统类似平台高出一个数量级以上。
3、整体能耗更低。同等计算任务,能耗最低。
4、系统更加稳定可靠。能够消除各种单点故障环节,统一一个部件、器件的品质和标准。
5、管理维护费用低。数据藏的常规管理全部集成。
6、可规划和预见的系统扩容、升级路线图。
云计算与大数据的关系
简单来说:云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。虽然从这个解释来看也不是完全贴切,但是却可以帮助对这两个名字不太明白的人很快理解其区别。当然,如果解释更形象一点的话,云计算相当于我们的计算机和操作系统,将大量的硬件资源虚拟化后在进行分配使用。
可以说,大数据相当于海量数据的“数据库”,通观大数据领域的发展我们也可以看出,当前的大数据发展一直在向着近似于传统数据库体验的方向发展,一句话就是,传统数据库给大数据的发展提供了足够大的空间。
大数据的总体架构包括三层:数据存储,数据处理和数据分析。数据先要通过存储层存储下来,然后根据数据需求和目标来建立相应的数据模型和数据分析指标体系对数据进行分析产生价值。
而中间的时效性又通过中间数据处理层提供的强大的并行计算和分布式计算能力来完成。三者相互配合,这让大数据产生最终价值。
不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极操作PB级别的数据”,确实让人兴奋不能止。
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务。它意味着计算能力也可作为一种商品通过互联网进行流通。
大数据(big data),或称海量数据,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
大数据管理,分布式进行文件系统,如Hadoop、Mapreduce数据分割与访问执行;同时SQL支持,以Hive+HADOOP为代表的SQL界面支持,在大数据技术上用云计算构建下一代数据仓库成为热门话题。从系统需求来看,大数据的架构对系统提出了新的挑战:
1、集成度更高。一个标准机箱最大限度完成特定任务。
2、配置更合理、速度更快。存储、控制器、I/O通道、内存、CPU、网络均衡设计,针对数据仓库访问最优设计,比传统类似平台高出一个数量级以上。
3、整体能耗更低。同等计算任务,能耗最低。
4、系统更加稳定可靠。能够消除各种单点故障环节,统一一个部件、器件的品质和标准。
5、管理维护费用低。数据藏的常规管理全部集成。
6、可规划和预见的系统扩容、升级路线图。
云计算与大数据的关系
简单来说:云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。虽然从这个解释来看也不是完全贴切,但是却可以帮助对这两个名字不太明白的人很快理解其区别。当然,如果解释更形象一点的话,云计算相当于我们的计算机和操作系统,将大量的硬件资源虚拟化后在进行分配使用。
可以说,大数据相当于海量数据的“数据库”,通观大数据领域的发展我们也可以看出,当前的大数据发展一直在向着近似于传统数据库体验的方向发展,一句话就是,传统数据库给大数据的发展提供了足够大的空间。
大数据的总体架构包括三层:数据存储,数据处理和数据分析。数据先要通过存储层存储下来,然后根据数据需求和目标来建立相应的数据模型和数据分析指标体系对数据进行分析产生价值。
而中间的时效性又通过中间数据处理层提供的强大的并行计算和分布式计算能力来完成。三者相互配合,这让大数据产生最终价值。
不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极操作PB级别的数据”,确实让人兴奋不能止。
展开全部
云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
大数据,云计算,看起来都是非常高大上的东西,还是切合点实际,先落地再说吧。我们公司数据量比较大,用的是国产的FineBI软件,还不错!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
云计算:
1、云计算->IT资源的拥有权和使用权的分离(资源归云计算中心所有,使用权归付费用户所有)
2、云平台的角色:聚合->平台->一种生态系统(如apple的app store、淘宝网等,平台演变成一种经济生态环境)
3、云计算和物联网类软件登记量带905和380件,同比增长200.66%和119.65,说明发展趋势很显著。但是(以北京地区为例)软件登记量和产品登记量分别为262、152以及7、16,软件转化为产品的转化率不足1%。为何?(转化期长,且回报周期也长,另外国人付费消费软件的意识不强)
4、据中国互联网协会预计,2012年我国云计算市场规模将超600亿元,“十二五”期间,产业链规模达7500亿元至1万亿元。
5、云存储应用的主要存储类型有:Nearline Storage、Disaster Recovery、Archive、Collaboration/File Sharing、Primary Storage、Backup(RD和backup只产生很少的固定时刻的费用。但如果将文件或数据访问业务托管到云存储平台,那么费用会成为一大考虑因素,不过倒也省了很多访问评价、空间容量不足的担心)
6、63%的云用户使用的是PaaS,用其来开发和部署基于云的应用。在使用PaaS云服务的用户中,43%使用其来开发和部署移动应用,30%依赖PaaS进行应用测试。(使用PaaS会极大的依赖云平台厂商,之后若想跨厂商基本不太可能,如果是想跨厂商,那还是使用IssA比较好)
大数据 AND 云计算
7、大数据&云时代->对商业模式造成的冲击?(从前在内部维护IT团队的企业是否考虑将硬件部分托管给云平台厂商?自己更专注于web服务的开发或业务的创新?在考虑IT成本时,是否可以将运维成本省去而增补研发成本?对大数据而已,因为MapReduce需要使用java语言编写,而分析数据有需要数学统计学背景,企业如何招聘这样的人才?是否会产生类似“结对编程”的“结对工作”模式?)
8、大数据VS云计算:
大数据通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析通常与云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百甚至数千的电脑分配工作。
9、小企业应该开启其大数据策略。数据可以帮助每个人,当不再丢弃数据,即成为大数据。(那么大数据的存储是否需要动用云平台帮忙?如果数据存储在云平台,分析是否也在云平台完成?那么启用大数据策略所带来的成本与收益之间如何平衡?)
10、大数据是否会成为BI(Business Intelligence)的继任者?(BI在对resource数据进行extract时会丢弃一部分数据,更不用说企业数据在录入resource时被遗弃的那些数据了,就信息量来说,BI的基础信息储备就远远小于大数据。大数据还是颇为值得期待的)
小结:
云计算被说得玄乎其玄,但是对一般的用户而言,云计算其实就是提供了一种按需付费的计算或存储资源。也就是上面1中说的“IT资源的拥有权和使用权的分离”,有点像现在的公司租用商业写字楼的感觉。
而大数据,如果按照8、9中的描述,它将收集企业几乎所有的信息用于分析,无疑是在digging一座矿藏。digging的方法以及所期望得到的目标都很让人期待。之前在学BI时,就觉得BI很诱人,但前戏实在太漫长。要抽取(extract)、转换(transform)然后还要装载(load)到数据库中(即传说中的ETL),然后进行分析。在这个过程中,形式化和清洗数据就让人很纠结。更别提如果还要将非结构化数据进行结构化了。
大数据就不存在这个问题,它分析的基础就是非结构化或半机构化的数据。虽然存取、分析的速度也许比不上数据库的SQL语言,但一想到保留了资源的多样性和原生态性就很高兴。终于不用在分析之前剔除我们以为是冗余或无用但有可能带给我们惊喜的数据了!但是完备的数据保留和非结构化的数据形式所需求的额外的存储以及计算资源是否适合于请求云平台帮忙?哪类型的公司又适用于启用云平台来完成大数据时代的转型?也许用户面越广泛,即类型越通用的软件的厂商更适合大数据。
http://wenku.baidu.com/view/18401d6ca45177232f60a275.html
1、云计算->IT资源的拥有权和使用权的分离(资源归云计算中心所有,使用权归付费用户所有)
2、云平台的角色:聚合->平台->一种生态系统(如apple的app store、淘宝网等,平台演变成一种经济生态环境)
3、云计算和物联网类软件登记量带905和380件,同比增长200.66%和119.65,说明发展趋势很显著。但是(以北京地区为例)软件登记量和产品登记量分别为262、152以及7、16,软件转化为产品的转化率不足1%。为何?(转化期长,且回报周期也长,另外国人付费消费软件的意识不强)
4、据中国互联网协会预计,2012年我国云计算市场规模将超600亿元,“十二五”期间,产业链规模达7500亿元至1万亿元。
5、云存储应用的主要存储类型有:Nearline Storage、Disaster Recovery、Archive、Collaboration/File Sharing、Primary Storage、Backup(RD和backup只产生很少的固定时刻的费用。但如果将文件或数据访问业务托管到云存储平台,那么费用会成为一大考虑因素,不过倒也省了很多访问评价、空间容量不足的担心)
6、63%的云用户使用的是PaaS,用其来开发和部署基于云的应用。在使用PaaS云服务的用户中,43%使用其来开发和部署移动应用,30%依赖PaaS进行应用测试。(使用PaaS会极大的依赖云平台厂商,之后若想跨厂商基本不太可能,如果是想跨厂商,那还是使用IssA比较好)
大数据 AND 云计算
7、大数据&云时代->对商业模式造成的冲击?(从前在内部维护IT团队的企业是否考虑将硬件部分托管给云平台厂商?自己更专注于web服务的开发或业务的创新?在考虑IT成本时,是否可以将运维成本省去而增补研发成本?对大数据而已,因为MapReduce需要使用java语言编写,而分析数据有需要数学统计学背景,企业如何招聘这样的人才?是否会产生类似“结对编程”的“结对工作”模式?)
8、大数据VS云计算:
大数据通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析通常与云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百甚至数千的电脑分配工作。
9、小企业应该开启其大数据策略。数据可以帮助每个人,当不再丢弃数据,即成为大数据。(那么大数据的存储是否需要动用云平台帮忙?如果数据存储在云平台,分析是否也在云平台完成?那么启用大数据策略所带来的成本与收益之间如何平衡?)
10、大数据是否会成为BI(Business Intelligence)的继任者?(BI在对resource数据进行extract时会丢弃一部分数据,更不用说企业数据在录入resource时被遗弃的那些数据了,就信息量来说,BI的基础信息储备就远远小于大数据。大数据还是颇为值得期待的)
小结:
云计算被说得玄乎其玄,但是对一般的用户而言,云计算其实就是提供了一种按需付费的计算或存储资源。也就是上面1中说的“IT资源的拥有权和使用权的分离”,有点像现在的公司租用商业写字楼的感觉。
而大数据,如果按照8、9中的描述,它将收集企业几乎所有的信息用于分析,无疑是在digging一座矿藏。digging的方法以及所期望得到的目标都很让人期待。之前在学BI时,就觉得BI很诱人,但前戏实在太漫长。要抽取(extract)、转换(transform)然后还要装载(load)到数据库中(即传说中的ETL),然后进行分析。在这个过程中,形式化和清洗数据就让人很纠结。更别提如果还要将非结构化数据进行结构化了。
大数据就不存在这个问题,它分析的基础就是非结构化或半机构化的数据。虽然存取、分析的速度也许比不上数据库的SQL语言,但一想到保留了资源的多样性和原生态性就很高兴。终于不用在分析之前剔除我们以为是冗余或无用但有可能带给我们惊喜的数据了!但是完备的数据保留和非结构化的数据形式所需求的额外的存储以及计算资源是否适合于请求云平台帮忙?哪类型的公司又适用于启用云平台来完成大数据时代的转型?也许用户面越广泛,即类型越通用的软件的厂商更适合大数据。
http://wenku.baidu.com/view/18401d6ca45177232f60a275.html
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询