高数,求导问题,过程
【1】f[x]=x[x+1][x+2].....[x+100][2]f[x]=a0x^n+a1x^[n-1]+..........a[n-1]x+an...
【1】f[x]=x[x+1][x+2].....[x+100]
[2]f[x]=a0 x^n+a1 x^[n-1]+..........a[n-1]x+ an 展开
[2]f[x]=a0 x^n+a1 x^[n-1]+..........a[n-1]x+ an 展开
2个回答
展开全部
(1)f(x)=x(x+1)(x+2)(x+3).含启.....(x+100)
lnf(x)=lnx+ln(x+1)+ln(x+2)+...+ln(x+100)
[lnf(x)]'=f'(x)/f(x)=1/(x)+1/谈键如(x+1)+1/(x+2)+....+1/(x+100)
所以,
f'(x)=f(x)×[1/亮尺(x)+1/(x+1)+1/(x+2)+...+1/(x+100)]
(2)f(x)=a0 x^n+a1 x^[n-1]+..........a[n-1]x+ an
f'(x)=n×a0×x^(n-1)+(n-1)×a1×x^(n-2)+……+a(n-1)
lnf(x)=lnx+ln(x+1)+ln(x+2)+...+ln(x+100)
[lnf(x)]'=f'(x)/f(x)=1/(x)+1/谈键如(x+1)+1/(x+2)+....+1/(x+100)
所以,
f'(x)=f(x)×[1/亮尺(x)+1/(x+1)+1/(x+2)+...+1/(x+100)]
(2)f(x)=a0 x^n+a1 x^[n-1]+..........a[n-1]x+ an
f'(x)=n×a0×x^(n-1)+(n-1)×a1×x^(n-2)+……+a(n-1)
2013-04-06
展开全部
两边冲兄樱对x求导:
y'尘斗 + [(1/2)/√(x +y)](x + y)'] = 1
y' + [(1/2)/√(x +y)](1 + y'散丛)] = 1
y'尘斗 + [(1/2)/√(x +y)](x + y)'] = 1
y' + [(1/2)/√(x +y)](1 + y'散丛)] = 1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询