展开全部
(1)证明:∵△ABC是等腰三角形,CH是底边上的高线,
∴AC=BC,∠ACP=∠BCP.
又∵CP=CP,
∴△ACP≌△BCP.
∴∠CAP=∠CBP,即∠CAE=∠CBF.
(2)证明:∵在△ACE与△BCF中,
∠ACE=∠BCF∠CAE=∠CBFAC=BC,
∴△ACE≌△BCF(AAS).
∴AE=BF.
(3)解:∵由(2)知△ABG是以AB为底边的等腰三角形,
∴S△ABC=S△ABG.
∴AE=AC.
①当∠C为直角或钝角时,在△ACE中,不论点P在CH何处,均有AE>AC,所以结论不成立;
②当∠C为锐角时,∠CAH=90°-12∠C,而∠CAE<∠CAH,要使AE=AC,只需使∠C=∠CEA,
此时,∠CAE=180°-2∠C,
只须180°-2∠C<90°-1/2∠C,解得60°<∠C<90°
∴AC=BC,∠ACP=∠BCP.
又∵CP=CP,
∴△ACP≌△BCP.
∴∠CAP=∠CBP,即∠CAE=∠CBF.
(2)证明:∵在△ACE与△BCF中,
∠ACE=∠BCF∠CAE=∠CBFAC=BC,
∴△ACE≌△BCF(AAS).
∴AE=BF.
(3)解:∵由(2)知△ABG是以AB为底边的等腰三角形,
∴S△ABC=S△ABG.
∴AE=AC.
①当∠C为直角或钝角时,在△ACE中,不论点P在CH何处,均有AE>AC,所以结论不成立;
②当∠C为锐角时,∠CAH=90°-12∠C,而∠CAE<∠CAH,要使AE=AC,只需使∠C=∠CEA,
此时,∠CAE=180°-2∠C,
只须180°-2∠C<90°-1/2∠C,解得60°<∠C<90°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询