设等比数列{an}的前n项和为Sn S4=1 S8=17求通项公式an
2个回答
展开全部
解:
设公比为q,若q=1,则S4=4a1 S8=8a1
S8/S4=8/4=2≠17,与已知不符,因此q≠1
S8/S4=[a1(q^8 -1)/(q-1)]/[a1(q^4-1)/(q-1)]=(q^4+1)(q^4-1)/(q^4-1)=q^4+1=17/1=17
q^4=16
q=2或q=-2
q=2时,S4=a1(q^4 -1)/(q-1)=15a1=1 a1=1/15
an=a1q^(n-1)=(1/15)×2^(n-1)
q=-2时,S4=a1(q^4-1)/(q-1)=-5a1=1 a1=-1/5
an=a1q^(n-1)=(-1/5)×(-2)^(n-1)=(-1)ⁿ×2^(n-1) /15
设公比为q,若q=1,则S4=4a1 S8=8a1
S8/S4=8/4=2≠17,与已知不符,因此q≠1
S8/S4=[a1(q^8 -1)/(q-1)]/[a1(q^4-1)/(q-1)]=(q^4+1)(q^4-1)/(q^4-1)=q^4+1=17/1=17
q^4=16
q=2或q=-2
q=2时,S4=a1(q^4 -1)/(q-1)=15a1=1 a1=1/15
an=a1q^(n-1)=(1/15)×2^(n-1)
q=-2时,S4=a1(q^4-1)/(q-1)=-5a1=1 a1=-1/5
an=a1q^(n-1)=(-1/5)×(-2)^(n-1)=(-1)ⁿ×2^(n-1) /15
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询