4个回答
展开全部
2/x+1-x-3/x²-1=2/(x+1)-(x-3)/(x+1)(x-1)
通分得化简得1/(x-1),∵x=2013,∴原式=1/2012
通分得化简得1/(x-1),∵x=2013,∴原式=1/2012
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2/(x+1)-(x-3)/(x²-1)=[2(x-1)-x+3]/(x²-1)=1/(x-1)
当x=2013时 1/(x-1)=1/2012
当x=2013时 1/(x-1)=1/2012
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式=2/(x+1)-{(x-1)-2}/(x+1)(x-1)
=2/(x+1)-1/(x+1)+2/(x+1)(x-1)
=1/(x+1){1+2/(x-1)}
=1/(x+1){(x-1+2)/(x-1)}
=1/(x-1)
=1/2012
=2/(x+1)-1/(x+1)+2/(x+1)(x-1)
=1/(x+1){1+2/(x-1)}
=1/(x+1){(x-1+2)/(x-1)}
=1/(x-1)
=1/2012
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2/(x+1)-(x-3)/(x²-1)
=[2(x-1)-(x-3)]/(x²-1)
=(x+1)/(x²-1)
=1/(x-1)
=1/2012
=[2(x-1)-(x-3)]/(x²-1)
=(x+1)/(x²-1)
=1/(x-1)
=1/2012
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询