正方形ABCD,E为对角线AC一点,联接EB,ED.延长BE交AD与F,∠BEC=∠DEC。 求;当CE=CD时,求DF²=EF·BF

sammon0515
2013-04-06 · TA获得超过1830个赞
知道小有建树答主
回答量:645
采纳率:66%
帮助的人:365万
展开全部
证明:
已知∠BEC=∠DEC,且CE=CB=CD,那么∠CED=∠CBE
∠CBE=∠CBD+∠EBD,而∠CED=∠EAD+∠EDF,其中∠CBD=∠EAD=45°
所以得到∠EBD=∠EDF,且∠EFD是△BFD和△DFE的共同角,
由相似三角形的定义得到△DFE∽△BFD,从而有DF/BF=FE/FD,即DF²=EF*BF,证毕
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式