已知数列﹛an﹜各项均为正数且a1=1,a²n+1-an+1=a²n+an

求数列﹛an﹜的通项公式和bn=1/a²n数列﹛bn﹜前n项和Tn,求证Tn<2... 求数列﹛an﹜的通项公式和bn=1/a²n数列﹛bn﹜前n项和Tn,求证Tn<2 展开
xuzhouliuying
高粉答主

推荐于2016-12-01 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
a(n+1)²-a(n+1)=an²+an

[a(n+1)²-an²]-[a(n+1)+an]=0
[a(n+1)+an][a(n+1)-an]-[a(n+1)+an]=0
[a(n+1)+an][a(n+1)-an-1]=0
数列各项均为正,a(n+1)+an>0,要等式成立,只有a(n+1)-an-1=0
a(n+1)-an=1,为定值。
又a1=1,数列{an}是以1为首项,1为公差的等差数列。
an=1+1×(n-1)=n
数列{an}的通项公式为an=n
bn=1/an²=1/n²
n≥2时,1/n²<1/[(n-1)n] 注意:这里用到了放缩法,后面的过程要用到。
Tn=b1+b2+b3+...+bn
=1/1²+1/2²+1/3²+...+1/n²
<1+1/(1×2)+1/(2×3)+...+1/[(n-1)n]
=1+1-1/2+1/2-1/3+...+1/(n-1)-1/n
=2 -1/n<2
Tn<2
花八电U
2013-04-06 · TA获得超过1.8万个赞
知道大有可为答主
回答量:3.1万
采纳率:80%
帮助的人:7279万
展开全部

an=n,(nEn+,)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式