跪求一个用vb设计的有三角函数功能的计算器,需要源代码,最好是有课程设计,期末作业你懂的!
4个回答
2013-04-06
展开全部
'给你在msdn上找了一下函数定义并整理了一下,可以用combo做个函数列表用select case调用函数,或者用command控件数组调用函数,接下来的就是纯体力活了,调用函数是注意数据类型,可能是弧度也可能是角度。
sin 基本函数
cos 基本函数
tan 基本函数
atn 基本函数
Secant(正割) Sec(X) = 1 / Cos(X)
Cosecant(余割) Cosec(X) = 1 / Sin(X)
Cotangent(余切) Cotan(X) = 1 / Tan(X)
Inverse Sine(反正弦) Arcsin(X) = Atn(X / Sqr(-X * X + 1))
Inverse Cosine (反余弦) Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1)
Inverse Secant (反正割) Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) - 1) * (2 * Atn(1))
Inverse Cosecant (反余割) Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1))
Inverse Cotangent (反余切) Arccotan(X) = Atn(X) + 2 * Atn(1)
Hyperbolic Sine (双曲正弦) HSin(X) = (Exp(X) - Exp(-X)) / 2
Hyperbolic Cosine (双曲余弦) HCos(X) = (Exp(X) + Exp(-X)) / 2
Hyperbolic Tangent (双曲正切) HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))
Hyperbolic Secant (双曲正割) HSec(X) = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant(双曲余割) HCosec(X) = 2 / (Exp(X) - Exp(-X))
Hyperbolic Cotangent(双曲余切) HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
Inverse Hyperbolic Sine(反双曲正弦) HArcsin(X) = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine(反双曲余弦) HArccos(X) = Log(X + Sqr(X * X - 1))
Inverse Hyperbolic Tangent(反双曲正切) HArctan(X) = Log((1 + X) / (1 - X)) / 2
Inverse Hyperbolic Secant(反双曲正割) HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant (反双曲余割) HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)
Inverse Hyperbolic Cotangent (反双曲余切) HArccotan(X) = Log((X + 1) / (X - 1)) / 2
sin 基本函数
cos 基本函数
tan 基本函数
atn 基本函数
Secant(正割) Sec(X) = 1 / Cos(X)
Cosecant(余割) Cosec(X) = 1 / Sin(X)
Cotangent(余切) Cotan(X) = 1 / Tan(X)
Inverse Sine(反正弦) Arcsin(X) = Atn(X / Sqr(-X * X + 1))
Inverse Cosine (反余弦) Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1)
Inverse Secant (反正割) Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) - 1) * (2 * Atn(1))
Inverse Cosecant (反余割) Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1))
Inverse Cotangent (反余切) Arccotan(X) = Atn(X) + 2 * Atn(1)
Hyperbolic Sine (双曲正弦) HSin(X) = (Exp(X) - Exp(-X)) / 2
Hyperbolic Cosine (双曲余弦) HCos(X) = (Exp(X) + Exp(-X)) / 2
Hyperbolic Tangent (双曲正切) HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))
Hyperbolic Secant (双曲正割) HSec(X) = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant(双曲余割) HCosec(X) = 2 / (Exp(X) - Exp(-X))
Hyperbolic Cotangent(双曲余切) HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
Inverse Hyperbolic Sine(反双曲正弦) HArcsin(X) = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine(反双曲余弦) HArccos(X) = Log(X + Sqr(X * X - 1))
Inverse Hyperbolic Tangent(反双曲正切) HArctan(X) = Log((1 + X) / (1 - X)) / 2
Inverse Hyperbolic Secant(反双曲正割) HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant (反双曲余割) HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)
Inverse Hyperbolic Cotangent (反双曲余切) HArccotan(X) = Log((X + 1) / (X - 1)) / 2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询