已知复数z=(根号3+i)/(1-根号3i)^2,则|z|=______
3个回答
展开全部
z=(√3+i)/(1-√3i)^2
=(√3+i)/(1-2√3i+3i^2)
=(√3+i)/(-2-2√3i)
=(√3+i)/(-2)(1+√3i)
=(√3+i)(1-√3i)/(-2)(1+√3i)(1-√3i)
=(√3-3i+i-√3i^2)/(-2)(1-3i^2)
=(2√3-2i)/(-2)(4)
=-√3/4 +i/4
|z|=√[(-√3/4)^2+(1/4)^2]
=√(3/16+1/16)
=√1/4
=1/2
=(√3+i)/(1-2√3i+3i^2)
=(√3+i)/(-2-2√3i)
=(√3+i)/(-2)(1+√3i)
=(√3+i)(1-√3i)/(-2)(1+√3i)(1-√3i)
=(√3-3i+i-√3i^2)/(-2)(1-3i^2)
=(2√3-2i)/(-2)(4)
=-√3/4 +i/4
|z|=√[(-√3/4)^2+(1/4)^2]
=√(3/16+1/16)
=√1/4
=1/2
展开全部
已知复数z=(根号3+i)/(1-根号3i)^2,则|z|=___1/4___
z=(根号3+i)/(1-根号3i)^2
=(根号3+i)/(-2-2根号3i)
=-i/4
z=(根号3+i)/(1-根号3i)^2
=(根号3+i)/(-2-2根号3i)
=-i/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询