x-1分之1-x+1分之1-x^2+1分之1-x^4+1分之1
1个回答
展开全部
你好:
前两项依次通分化简
1/(x-1)-1/(x+1)-1/(x^2+1)-1/(x^4+1)
=[(x+1)-(x-1)]/(x-1)(x+1)-1/(x^2+1)-1/(x^4+1)
=2/(x^2-1)-1/(x^2+1)-1/(x^4+1)
=[2(x^2+1)-(x^2-1)]/(x^2-1)(x^2+1)-1/(x^4+1)
=(x^2+3)/(x^4-1)-1/(x^4+1)
=[(x^2+3)(x^4+1)-(x^4-1)]/(x^4-1)(x^4+1)
=(x^6+x^2+3x^4+3-x^4+1)/(x^8-1)
=(x^6+2x^4+x^2+4)/(x^8-1)
希望对你有帮助!
前两项依次通分化简
1/(x-1)-1/(x+1)-1/(x^2+1)-1/(x^4+1)
=[(x+1)-(x-1)]/(x-1)(x+1)-1/(x^2+1)-1/(x^4+1)
=2/(x^2-1)-1/(x^2+1)-1/(x^4+1)
=[2(x^2+1)-(x^2-1)]/(x^2-1)(x^2+1)-1/(x^4+1)
=(x^2+3)/(x^4-1)-1/(x^4+1)
=[(x^2+3)(x^4+1)-(x^4-1)]/(x^4-1)(x^4+1)
=(x^6+x^2+3x^4+3-x^4+1)/(x^8-1)
=(x^6+2x^4+x^2+4)/(x^8-1)
希望对你有帮助!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询