展开全部
过D 作AB平行线 BC 上交点为E, ABED为平行四边形
AD = BE
∠DEC=30°
∠CDE = 180° -30° -45° = 105°
设CE = x
x/sin105° = 16√2/sin30° = 32√2
x = 32√2 sin105°
sin105° = sin(30°+45°) = sin30° cos45 °+ cos30° sin45° = 1/2 *√2/2 + √3/2 *√2/2
= √2/4 + √6/4
所以
x
= 32√2 * (√2/4 + √6/4)
= 16 + 16 √3
BC = 6 + x = 22 + 16√3
高度h = 16√2 * sin45°= 16
S= 平行四边形 + 三角形
= 6 * 16 + 1/2 * 16 * x
= 96+ 8*(16 + 16 √3)
= 224 + 128√ 3
AD = BE
∠DEC=30°
∠CDE = 180° -30° -45° = 105°
设CE = x
x/sin105° = 16√2/sin30° = 32√2
x = 32√2 sin105°
sin105° = sin(30°+45°) = sin30° cos45 °+ cos30° sin45° = 1/2 *√2/2 + √3/2 *√2/2
= √2/4 + √6/4
所以
x
= 32√2 * (√2/4 + √6/4)
= 16 + 16 √3
BC = 6 + x = 22 + 16√3
高度h = 16√2 * sin45°= 16
S= 平行四边形 + 三角形
= 6 * 16 + 1/2 * 16 * x
= 96+ 8*(16 + 16 √3)
= 224 + 128√ 3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询