设函数f(x)=1/3x^3+ax^2+5x+6在区间[1,3]上是单调函数,则实数a的取值范围是?求详细过程
函数f(x)=1/3x^3+ax^2+5x+6在区间[1,3]上是单调函数,则实数a的取值范围是?求详细过程用导函数的零点和1,3比大小讨论做出来的答案为什么不对...
函数f(x)=1/3x^3+ax^2+5x+6在区间[1,3]上是单调函数,则实数a的取值范围是?求详细过程
用导函数的零点和1,3比大小讨论做出来的答案为什么不对 展开
用导函数的零点和1,3比大小讨论做出来的答案为什么不对 展开
展开全部
f'(x)=x²+2ax+5
∵f(3)在(1,3)上为单调函数,∴f'(x)≤0或f’(x)≥0在(1,3)上恒成立。
令f'(x)=0即x²+2ax+5)=0 则a=-(x²+5)/2x
设g(x)=-(x²+5)/2x 则g’(x)=(5-x²)/2x²
令g’(x)=0得:x=√5或x=-√5(舍去)
∴当1≤x≤√5时,g’(x)≥0,当√5≤x≤3时,g’(x)≤0
∴g(x)在(1,√5)上递增,在(√5,3)上递减,
g(1)=-3 g(3)=-7/3,g(√5)=-√5
∴g(x)的最大值为g(√5)=-√5,最小值为g(1)=-3
∴当f'(x)≤0时,a≤g(x)≤g(1)=-3
当f’(x)≥0时,a≥g(x)≥g(√5)=-√5
∴a≤-3或a≥-√5
∵f(3)在(1,3)上为单调函数,∴f'(x)≤0或f’(x)≥0在(1,3)上恒成立。
令f'(x)=0即x²+2ax+5)=0 则a=-(x²+5)/2x
设g(x)=-(x²+5)/2x 则g’(x)=(5-x²)/2x²
令g’(x)=0得:x=√5或x=-√5(舍去)
∴当1≤x≤√5时,g’(x)≥0,当√5≤x≤3时,g’(x)≤0
∴g(x)在(1,√5)上递增,在(√5,3)上递减,
g(1)=-3 g(3)=-7/3,g(√5)=-√5
∴g(x)的最大值为g(√5)=-√5,最小值为g(1)=-3
∴当f'(x)≤0时,a≤g(x)≤g(1)=-3
当f’(x)≥0时,a≥g(x)≥g(√5)=-√5
∴a≤-3或a≥-√5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询