
已知函数f(x)=1/2x^2+lnx
1个回答
展开全部
首先函数的定义域为(0,正无穷)
然后求导,f(x)的导数=x+1/x=(x^2+1)/x大于0恒成立,所以函数f(x)在定义域内单调递增。
(2)设g(x)=1/2x^2+lnx-2/3x^3,只需要证明当x>1时, g(x)的最大值都小于0即可。
求导,g(x)的导数=x+1/x-2x^2=-(2x^3-x^2-1)/x=-(x-1)(2x^2+x+1)/x
令g(x)的导数=x+1/x-2x^2=-(2x^3-x^2-1)/x=-(x-1)(2x^2+x+1)/x>0得 x<1
令g(x)的导数=x+1/x-2x^2=-(2x^3-x^2-1)/x=-(x-1)(2x^2+x+1)/x<0得 x>1
所以g(x)在(负无穷,1)单调递增,在(1,正无穷)单调递减, 所以当x>1时, g(x)>g(1)=-1/3>0
所以当x>1时、1/2x^2+lnx<2/3x^3
然后求导,f(x)的导数=x+1/x=(x^2+1)/x大于0恒成立,所以函数f(x)在定义域内单调递增。
(2)设g(x)=1/2x^2+lnx-2/3x^3,只需要证明当x>1时, g(x)的最大值都小于0即可。
求导,g(x)的导数=x+1/x-2x^2=-(2x^3-x^2-1)/x=-(x-1)(2x^2+x+1)/x
令g(x)的导数=x+1/x-2x^2=-(2x^3-x^2-1)/x=-(x-1)(2x^2+x+1)/x>0得 x<1
令g(x)的导数=x+1/x-2x^2=-(2x^3-x^2-1)/x=-(x-1)(2x^2+x+1)/x<0得 x>1
所以g(x)在(负无穷,1)单调递增,在(1,正无穷)单调递减, 所以当x>1时, g(x)>g(1)=-1/3>0
所以当x>1时、1/2x^2+lnx<2/3x^3

2025-07-02 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询