SQL关系模式分解的步骤是什么?
6个回答
2013-04-09
展开全部
第一步,找到一个违背BCNF的非平凡依赖,并且在该依赖的右边加上尽量多的属性
第二步,把原始关系模式分解成两个属性重迭的关系模式,一个模式包含了违背BCNF的函数依赖的所有属性,另一个模式包含了依赖左边以及未包含在该依赖中的所有属性
第三步,判断新关系模式是否满足BCNF。如果不满足则继续重复上述步骤进行分解
第二步,把原始关系模式分解成两个属性重迭的关系模式,一个模式包含了违背BCNF的函数依赖的所有属性,另一个模式包含了依赖左边以及未包含在该依赖中的所有属性
第三步,判断新关系模式是否满足BCNF。如果不满足则继续重复上述步骤进行分解
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐于2018-03-13
展开全部
这个问题很难一言以蔽之,我给你举一个我常用的例子,希望对你有帮助:
设关系模式R(U,F)中,U={A,B,C,D,E},F={AB→C,C→D,D→E},R的一个分解ρ={ R1(A,B,C),R2(C,D),R3(D,E)}。试判断ρ具有无损连接性。
解:① 首先构造初始表,如图(a)所示。
A B C D E
R1(A,B,C) a1 a2 a3 b14 b15
R2(C,D) b21 b22 a3 a4 b25
R3(D,E) b31 b32 b33 a4 a5
(a)
A B C D E
R1(A,B,C) a1 a2 a3 a4 a5
R2(C,D) b21 b22 a3 a4 b25
R3(D,E) b31 b32 b33 a4 a5
(b)
图:分解的无损连接判断表
② 按下列次序反复检查函数依赖和修改M:
AB→C,属性A、B(第1、2列)中都没有相同的分量值,故M值不变;
C→D,属性C中有相同值,故应改变D属性中的M值,b14改为a4;
D→E,属性D中有相同值,b15、b25均改为a5。
结果如图(b)所示。
③ 此时第一行已为a1,a2,a3,a4,a5,所以ρ具有无损连接性。
说明:在上例步骤后,如果没有出现a1,a2,a3,a4,a5,并不能马上判断ρ不具有无损连接性。而应该进行第二次的函数依赖检查和修改M。直至M值不能改变,才能判断ρ是否具有无损连接性。
设关系模式R(U,F)中,U={A,B,C,D,E},F={AB→C,C→D,D→E},R的一个分解ρ={ R1(A,B,C),R2(C,D),R3(D,E)}。试判断ρ具有无损连接性。
解:① 首先构造初始表,如图(a)所示。
A B C D E
R1(A,B,C) a1 a2 a3 b14 b15
R2(C,D) b21 b22 a3 a4 b25
R3(D,E) b31 b32 b33 a4 a5
(a)
A B C D E
R1(A,B,C) a1 a2 a3 a4 a5
R2(C,D) b21 b22 a3 a4 b25
R3(D,E) b31 b32 b33 a4 a5
(b)
图:分解的无损连接判断表
② 按下列次序反复检查函数依赖和修改M:
AB→C,属性A、B(第1、2列)中都没有相同的分量值,故M值不变;
C→D,属性C中有相同值,故应改变D属性中的M值,b14改为a4;
D→E,属性D中有相同值,b15、b25均改为a5。
结果如图(b)所示。
③ 此时第一行已为a1,a2,a3,a4,a5,所以ρ具有无损连接性。
说明:在上例步骤后,如果没有出现a1,a2,a3,a4,a5,并不能马上判断ρ不具有无损连接性。而应该进行第二次的函数依赖检查和修改M。直至M值不能改变,才能判断ρ是否具有无损连接性。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-04-09
展开全部
第一步,找到一个违背BCNF的非平凡依赖,并且在该依赖的右边加上尽量多的属性
第二步,把原始关系模式分解成两个属性重迭的关系模式,一个模式包含了违背BCNF的函数依赖的所有属性,另一个模式包含了依赖左边以及未包含在该依赖中的所有属性
第三步,判断新关系模式是否满足BCNF。如果不满足则继续重复上述步骤进行分解
第二步,把原始关系模式分解成两个属性重迭的关系模式,一个模式包含了违背BCNF的函数依赖的所有属性,另一个模式包含了依赖左边以及未包含在该依赖中的所有属性
第三步,判断新关系模式是否满足BCNF。如果不满足则继续重复上述步骤进行分解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-05-04
展开全部
这个问题很难一言以蔽之,我给你举一个我常用的例子,希望对你有帮助:
设关系模式R(U,F)中,U={A,B,C,D,E},F={AB→C,C→D,D→E},R的一个分解ρ={ R1(A,B,C),R2(C,D),R3(D,E)}。试判断ρ具有无损连接性。
解:① 首先构造初始表,如图(a)所示。
A B C D E
R1(A,B,C) a1 a2 a3 b14 b15
R2(C,D) b21 b22 a3 a4 b25
R3(D,E) b31 b32 b33 a4 a5
(a)
A B C D E
R1(A,B,C) a1 a2 a3 a4 a5
R2(C,D) b21 b22 a3 a4 b25
R3(D,E) b31 b32 b33 a4 a5
(b)
图:分解的无损连接判断表
② 按下列次序反复检查函数依赖和修改M:
AB→C,属性A、B(第1、2列)中都没有相同的分量值,故M值不变;
C→D,属性C中有相同值,故应改变D属性中的M值,b14改为a4;
D→E,属性D中有相同值,b15、b25均改为a5。
结果如图(b)所示。
③ 此时第一行已为a1,a2,a3,a4,a5,所以ρ具有无损连接性。
说明:在上例步骤后,如果没有出现a1,a2,a3,a4,a5,并不能马上判断ρ不具有无损连接性。而应该进行第二次的函数依赖检查和修改M。直至M值不能改变,才能判断ρ是否具有无损连接性。
设关系模式R(U,F)中,U={A,B,C,D,E},F={AB→C,C→D,D→E},R的一个分解ρ={ R1(A,B,C),R2(C,D),R3(D,E)}。试判断ρ具有无损连接性。
解:① 首先构造初始表,如图(a)所示。
A B C D E
R1(A,B,C) a1 a2 a3 b14 b15
R2(C,D) b21 b22 a3 a4 b25
R3(D,E) b31 b32 b33 a4 a5
(a)
A B C D E
R1(A,B,C) a1 a2 a3 a4 a5
R2(C,D) b21 b22 a3 a4 b25
R3(D,E) b31 b32 b33 a4 a5
(b)
图:分解的无损连接判断表
② 按下列次序反复检查函数依赖和修改M:
AB→C,属性A、B(第1、2列)中都没有相同的分量值,故M值不变;
C→D,属性C中有相同值,故应改变D属性中的M值,b14改为a4;
D→E,属性D中有相同值,b15、b25均改为a5。
结果如图(b)所示。
③ 此时第一行已为a1,a2,a3,a4,a5,所以ρ具有无损连接性。
说明:在上例步骤后,如果没有出现a1,a2,a3,a4,a5,并不能马上判断ρ不具有无损连接性。而应该进行第二次的函数依赖检查和修改M。直至M值不能改变,才能判断ρ是否具有无损连接性。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-04-09
展开全部
只要注意:如果表中有两行在X分量上相等,在Y分量上中的"X分量和Y分量"
这里的X和Y就是函数依赖FD中的属性
其实这个算法,就是求原来关系在分解后的关系上的投影
这里的X和Y就是函数依赖FD中的属性
其实这个算法,就是求原来关系在分解后的关系上的投影
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |