如图,以△ABC的三边为边在BC的同一侧作等边△ABP。等边△ACQ,等边△BCR。那么四边行AQRP为平行四边形吗
展开全部
∵△ABP,△RBC为等边三角形
∴BP=AB,∠PBA=60°,RB=BC,∠RBC=60°
∴∠PBA-∠RBC=∠RBC-∠RBA
∴∠PBR=∠ABC
∵在△PBR与△ABC中,PB=AB,BR=BC,∠PBR=∠ABC
∴△PBR≌△ABC
∴PR=AC
∵△ACQ为等边三角形
∴PR=AQ
∵∠RCB-∠RCA=∠ACQ-∠RCQ
∴交ACB=∩RCQ
同理
∴△ABC=△QRC(SAS)
∴RQ=BC
∵BC=BP,BP=AP
∴AP=QR
∴四边形PAQR为平行四边形
最后祝楼主学习进步
∴BP=AB,∠PBA=60°,RB=BC,∠RBC=60°
∴∠PBA-∠RBC=∠RBC-∠RBA
∴∠PBR=∠ABC
∵在△PBR与△ABC中,PB=AB,BR=BC,∠PBR=∠ABC
∴△PBR≌△ABC
∴PR=AC
∵△ACQ为等边三角形
∴PR=AQ
∵∠RCB-∠RCA=∠ACQ-∠RCQ
∴交ACB=∩RCQ
同理
∴△ABC=△QRC(SAS)
∴RQ=BC
∵BC=BP,BP=AP
∴AP=QR
∴四边形PAQR为平行四边形
最后祝楼主学习进步
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询