在数列{an}、{bn}中,a1=2、b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*)
(1)求a1,a2,a3及b1,b2,b3,由此猜测{an},{bn}的通项公式,并证明你的结论;(2)证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn)...
(1)求a1,a2,a3及b1,b2,b3,由此猜测{an},{bn}的通项公式,并证明你的结论;
(2)证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn)<5/12 猜想我知道,可是用数学归纳法证明时,n=1,左边、右边等于多少。要怎么弄 展开
(2)证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn)<5/12 猜想我知道,可是用数学归纳法证明时,n=1,左边、右边等于多少。要怎么弄 展开
3个回答
展开全部
1
a2 = b1 + b1-a1 = 4 + 4 -2 =6
b2 = a2 * a2/b1 = 6 * 6 /4 = 9
a3 = b2 + b2 - a2 = 9+9- 6 = 12
b3 = a3 * a3/b2 = 12 * 12 /9 = 16
{an} = { 2, 6, 12, ...}
{bn} = { 4, 9, 16, ...}
猜测
an = (n+1)^2 -(n+1) = n (n+1)
bn = (n+1)^2
假设n<=k时a1..ak满足
ak = (k+1)
和b1... bk 满足
bk = (k+1)^2
希望从中推导出 n= k+1时ak+1, bk+1也能满足上面关系。
an,bn,an+1成等差数列
所以
ak+1 + ak = 2 bk
ak+1 = 2 bk -ak
= 2 (k+1)^2 - k (k+1)
= (k+1)( 2(k+1) -k)
= (k+1)(k+2)
= (k+1)(k+1 +1)
所以ak+1符合上面关系
bn,an+1,bn+1成等比数列
bk+1 = an+1 * an+1/bn
= (k+1)(k+2)(k+1)(k+2)/(k+1)^2
= (k+2)^2
=(k+1 +1)^2
所以bk+1符合上面关系
{an},{bn}的通项公式就是
an = (n+1)^2 -(n+1) = n (n+1)
bn = (n+1)^2
2
an+bn = n (n+1) + (n+1)^2= (n+1) (n+ n+1) = (n+1) (2n+1)
1/(an+bn) = 1/(2n^2 +3n+1) < 1/(2n^2+2n) = 1/2 * (1/n(n+1) = 1/2 (1/n- 1/(n+1))
1/(a1+b1)+1/(a2+b2)+…1/(an+bn)
< 1/(a1+b1) + 1/2(1/2 - 1/3) + 1/2(1/3 -1/4) + ... + 1/2 (1/n- 1/(n+1))
= 1/(2+4) + 1/2 * (1/2 - 1/(n+1))
< 1/6 + 1/4
= 2/12 + 3/12
=5/12
a2 = b1 + b1-a1 = 4 + 4 -2 =6
b2 = a2 * a2/b1 = 6 * 6 /4 = 9
a3 = b2 + b2 - a2 = 9+9- 6 = 12
b3 = a3 * a3/b2 = 12 * 12 /9 = 16
{an} = { 2, 6, 12, ...}
{bn} = { 4, 9, 16, ...}
猜测
an = (n+1)^2 -(n+1) = n (n+1)
bn = (n+1)^2
假设n<=k时a1..ak满足
ak = (k+1)
和b1... bk 满足
bk = (k+1)^2
希望从中推导出 n= k+1时ak+1, bk+1也能满足上面关系。
an,bn,an+1成等差数列
所以
ak+1 + ak = 2 bk
ak+1 = 2 bk -ak
= 2 (k+1)^2 - k (k+1)
= (k+1)( 2(k+1) -k)
= (k+1)(k+2)
= (k+1)(k+1 +1)
所以ak+1符合上面关系
bn,an+1,bn+1成等比数列
bk+1 = an+1 * an+1/bn
= (k+1)(k+2)(k+1)(k+2)/(k+1)^2
= (k+2)^2
=(k+1 +1)^2
所以bk+1符合上面关系
{an},{bn}的通项公式就是
an = (n+1)^2 -(n+1) = n (n+1)
bn = (n+1)^2
2
an+bn = n (n+1) + (n+1)^2= (n+1) (n+ n+1) = (n+1) (2n+1)
1/(an+bn) = 1/(2n^2 +3n+1) < 1/(2n^2+2n) = 1/2 * (1/n(n+1) = 1/2 (1/n- 1/(n+1))
1/(a1+b1)+1/(a2+b2)+…1/(an+bn)
< 1/(a1+b1) + 1/2(1/2 - 1/3) + 1/2(1/3 -1/4) + ... + 1/2 (1/n- 1/(n+1))
= 1/(2+4) + 1/2 * (1/2 - 1/(n+1))
< 1/6 + 1/4
= 2/12 + 3/12
=5/12
2013-04-10
展开全部
(1)利用所给条件,可知:a1=2,b1=4,a2=6,b2=9,a3=12,b3=16,(a4=20,b4=25,……)因此可猜测,an=n(n+1),bn=(n+1)^2.下面利用数学归纳法对这个通项公式加以证明:I 当n=1时公式显然成立。II 假定n=k时公式成立,即ak=k(k+1),bk=(k+1)^2,那么,n=k+1时,由于ak,bk,a(k+1)成等差数列,所以,a(k+1)=2bk-ak=2(k+1)^2-k(k+1)=(k+1)(k+2);又由于bk,a(k+1),b(k+1)成等数列,所以,b(k+1)=a(k+1)^2/bk=[(k+1)(k+2)]^2/(k+1)^2=(k+2)^2;所以,n=k+1时,公式也是正确的。综合I,II可得,对于一切正整数,公式都是正确的,所以an=n(n+1),bn=(n+1)^2是数列{an}、{bn}的通项公式。(2)an+bn=n(n+1)+(n+1)^2=(n+1)(2n+1),所以,1/(an+bn)=1/[(n+1)(2n+1)<1/(2n(n+1))=(1/n-1/(n+1))/2.1/(a1+b1)+1/(a2+b2)+…1/(an+bn)<1/6+[(1/2-1/3)/2+(1/3-1/4)/2+……+(1/n-1/(n+1))/2]=1/6+1/4-1/(2(n+1))<1/6+1/4=5/12.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-04-10
展开全部
等差数列:an+a(n+2)=2a(n+1) 等比数列ana(n+2)=a(n+1)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询