17个回答
展开全部
一。
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.
29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?
44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?
46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?
47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?
48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?
49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?
50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?
51. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?
52. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?
53. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?
54. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.
55. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.
56. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?
57. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?
58. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?
59. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.
60. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.
61. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?
62. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?
63. 同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?
64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.
65. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?
66. 甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?
67. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?
68. 小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?
69. 小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.
70. 小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?
71. 数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?
72. 一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?
73. 少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?
74. 某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A 城多少千米?
75. 甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.
76. 一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?
77. 某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?
78. 一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?
79. 甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?
80. 一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分?
81. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?
82. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?
分!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.
29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?
44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?
46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?
47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?
48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?
49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?
50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?
51. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?
52. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?
53. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?
54. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.
55. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.
56. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?
57. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?
58. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?
59. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.
60. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.
61. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?
62. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?
63. 同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?
64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.
65. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?
66. 甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?
67. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?
68. 小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?
69. 小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.
70. 小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?
71. 数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?
72. 一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?
73. 少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?
74. 某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A 城多少千米?
75. 甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.
76. 一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?
77. 某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?
78. 一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?
79. 甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?
80. 一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分?
81. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?
82. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?
分!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
展开全部
已知一个等腰梯形的周长是34厘米,腰是6厘米,高是15厘米。求梯形的面积。
梯形的上底一定比下底短。————————()
梯形的上底一定比下底短。————————()
参考资料: 参考书
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
对楼上三位写出一百道数学题的强人致敬!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我这儿什麽题都有,你要那道自己找!一定要选我为最佳答案呀,呵呵,多给点分!
1.125*3+125*5+25*3+25
2.9999*3+101*11*(101-92)
3.(23/4-3/4)*(3*6+2)
4. 3/7 × 49/9 - 4/3
5. 8/9 × 15/36 + 1/27
6. 12× 5/6 – 2/9 ×3
7. 8× 5/4 + 1/4
8. 6÷ 3/8 – 3/8 ÷6
9. 4/7 × 5/9 + 3/7 × 5/9
10. 5/2 -( 3/2 + 4/5 )
11. 7/8 + ( 1/8 + 1/9 )
12. 9 × 5/6 + 5/6
13. 3/4 × 8/9 - 1/3
14. 7 × 5/49 + 3/14
15. 6 ×( 1/2 + 2/3 )
16. 8 × 4/5 + 8 × 11/5
17. 31 × 5/6 – 5/6
18. 9/7 - ( 2/7 – 10/21 )
19. 5/9 × 18 – 14 × 2/7
20. 4/5 × 25/16 + 2/3 × 3/4
21. 14 × 8/7 – 5/6 × 12/15
22. 17/32 – 3/4 × 9/24
23. 3 × 2/9 + 1/3
24. 5/7 × 3/25 + 3/7
25. 3/14 ×× 2/3 + 1/6
26. 1/5 × 2/3 + 5/6
27. 9/22 + 1/11 ÷ 1/2
28. 5/3 × 11/5 + 4/3
29. 45 × 2/3 + 1/3 × 15
30. 7/19 + 12/19 × 5/6
31. 1/4 + 3/4 ÷ 2/3
32. 8/7 × 21/16 + 1/2
33. 101 × 1/5 – 1/5 × 21
34.50+160÷40
35.120-144÷18+35
36.347+45×2-4160÷52
37(58+37)÷(64-9×5)
38.95÷(64-45)
39.178-145÷5×6+42
40.812-700÷(9+31×11)
41.85+14×(14+208÷26)
43.120-36×4÷18+35
44.(58+37)÷(64-9×5)
45.(6.8-6.8×0.55)÷8.5
46.0.12× 4.8÷0.12×4.8
47.(3.2×1.5+2.5)÷1.6
48.6-1.6÷4= 5.38+7.85-5.37=
49.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
50.6.5×(4.8-1.2×4)=
51.5.8×(3.87-0.13)+4.2×3.74
52.32.52-(6+9.728÷3.2)×2.5
53.[(7.1-5.6)×0.9-1.15] ÷2.5
54.5.4÷[2.6×(3.7-2.9)+0.62]
55.12×6÷(12-7.2)-6
56.12×6÷7.2-6
57.0.68×1.9+0.32×1.9
58.58+370)÷(64-45)
59.420+580-64×21÷28
60.136+6×(65-345÷23)
15-10.75×0.4-5.7
62.18.1+(3-0.299÷0.23)×1
63.(6.8-6.8×0.55)÷8.5
64.0.12× 4.8÷0.12×4.8
65.(3.2×1.5+2.5)÷1.6
66.3.2×6+(1.5+2.5)÷1.6
67.0.68×1.9+0.32×1.9
68.10.15-10.75×0.4-5.7
69.5.8×(3.87-0.13)+4.2×3.74
70.32.52-(6+9.728÷3.2)×2.5
71.[(7.1-5.6)×0.9-1.15] ÷2.5
72.5.4÷[2.6×(3.7-2.9)+0.62]
73.12×6÷(12-7.2)-6
74.12×6÷7.2-6
75.33.02-(148.4-90.85)÷2.5
1) 76.(25%-695%-12%)*36
77./4*3/5+3/4*2/5
78.1-1/4+8/9/7/9
79.+1/6/3/24+2/21
80./15*3/5
81.3/4/9/10-1/6
82./3+1/2)/5/6-1/3]/1/7
83./5+3/5/2+3/4
84.(2-2/3/1/2)]*2/5
85.+5268.32-2569
86.3+456-52*8
87.5%+6325
88./2+1/3+1/4
2) 89+456-78
3) 5%+. 3/7 × 49/9 - 4/3
4) 9 × 15/36 + 1/27
5) 2× 5/6 – 2/9 ×3
6) 3× 5/4 + 1/4
7) 94÷ 3/8 – 3/8 ÷6
8) 95/7 × 5/9 + 3/7 × 5/9
9) 6/2 -( 3/2 + 4/5 )
10) 8 + ( 1/8 + 1/9 )
11) 8 × 5/6 + 5/6
12) 1/4 × 8/9 - 1/3
13) 10 × 5/49 + 3/14
14) 1.5 ×( 1/2 + 2/3 )
15) 2/9 × 4/5 + 8 × 11/5
16) 3.1 × 5/6 – 5/6
17) 4/7 - ( 2/7 – 10/21 )
18) 19 × 18 – 14 × 2/7
19) 5 × 25/16 + 2/3 × 3/4
20) 4 × 8/7 – 5/6 × 12/15
21) 7/32 – 3/4 × 9/24
22) 1、 2/3÷1/2-1/4×2/5
2、 2-6/13÷9/26-2/3
3、 2/9+1/2÷4/5+3/8
4、 10÷5/9+1/6×4
5、 1/2×2/5+9/10÷9/20
6、 5/9×3/10+2/7÷2/5
7、 1/2+1/4×4/5-1/8
8、 3/4×5/7×4/3-1/2
9、 23-8/9×1/27÷1/27
10、 8×5/6+2/5÷4
11、 1/2+3/4×5/12×4/5
12、 8/9×3/4-3/8÷3/4
13、 5/8÷5/4+3/23÷9/11
23) 1.2×2.5+0.8×2.5
24) 8.9×1.25-0.9×1.25
25) 12.5×7.4×0.8
26) 9.9×6.4-(2.5+0.24)(27) 6.5×9.5+6.5×0.5
0.35×1.6+0.35×3.4
0.25×8.6×4
6.72-3.28-1.72
0.45+6.37+4.55
5.4+6.9×3-(25-2.5)2×41846-620-380
4.8×46+4.8×54
0.8+0.8×2.5
1.25×3.6×8×2.5-12.5×2.4
28×12.5-12.5×20
23.65-(3.07+3.65)
(4+0.4×0.25)8×7×1.25
1.65×99+1.65
27.85-(7.85+3.4)
48×1.25+50×1.25×0.2×8
7.8×9.9+0.78
(1010+309+4+681+6)×12
3×9146×782×6×854
5.15×7/8+6.1-0.60625
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3
11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35
41.(58+37)÷(64-9×5)
42.(6.8-6.8×0.55)÷8.5
43.0.12× 4.8÷0.12×4.8
44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
45.6-1.6÷4= 5.38+7.85-5.37=
46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5
51.[(7.1-5.6)×0.9-1.15] ÷2.5
52.5.4÷[2.6×(3.7-2.9)+0.62]
53.12×6÷(12-7.2)-6 (4)12×6÷7.2-6
102×4.5
7.8×6.9+2.2×6.9
5.6×0.25
8×(20-1.25)
1)127+352+73+44 (2)89+276+135+33
(1)25+71+75+29 +88 (2)243+89+111+57
9405-2940÷28×21
920-1680÷40÷7
690+47×52-398
148+3328÷64-75
360×24÷32+730
2100-94+48×54
51+(2304-2042)×23
4215+(4361-716)÷81
(247+18)×27÷25
36-720÷(360÷18)
1080÷(63-54)×80
(528+912)×5-6178
8528÷41×38-904
264+318-8280÷69
(174+209)×26- 9000
814-(278+322)÷15
1406+735×9÷45
3168-7828÷38+504
796-5040÷(630÷7)
285+(3000-372)÷36
1+5/6-19/12
3x(-9)+7x(-9
(-54)x1/6x(-1/3)
1.18.1+(3-0.299÷0.23)×1
2.(6.8-6.8×0.55)÷8.5
3.0.12× 4.8÷0.12×4.8
4.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
5.6-1.6÷4= 5.38+7.85-5.37=
6.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
7.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
8.10.15-10.75×0.4-5.7
9.5.8×(3.87-0.13)+4.2×3.74
10.32.52-(6+9.728÷3.2)×2.5
11.[(7.1-5.6)×0.9-1.15] ÷2.5
12.5.4÷[2.6×(3.7-2.9)+0.62]
13.12×6÷(12-7.2)-6
14.12×6÷7.2-6
15.33.02-(148.4-90.85)÷2.5
1. 甲乙二人一起做数学题,如果甲再做4道和乙做的一样多,如果乙再做6道就是甲做的3倍,则甲做了多少道题?乙做了多少道题?
2. 游客在10时15分从码头划船逆流而上,要求在当天不迟于13点返回,以知水流速度为1.4千米/小时,船在静水的速度是3千米/小时.如果游客每划30分钟就休息15分钟而且只能在某次休息后往回划,那么他应该怎样安排才能使划离码头的距离最远?
3. 某次数学比赛,有两种评分方法:第一种答对一题得5分,不答得2分,答错不扣分;第二种先给40分,答对一题得3分,不答不得分,答错扣1分,某学生用两种方法评分均得81分,请问这次比赛共有多少道题?
4. 工程队要修一条水渠:如果每天多修8米,可提前4天完工;如果每天少修8米,则延后4天完工。请问这条水渠的长度?
一批粮食,运走全部的2/3(三分之二)少1吨.这时剩下的与原存的比是3:5.这批粮食原来有多少吨?
把两筐苹果分给甲、乙、丙三个班。甲班分得总量的2/5,剩下的按5:7分给乙、丙班。已知第二筐苹果重量是第一筐的9/10 ,且比第一筐少5千克。甲、乙、丙班分得的苹果分别是_________ 、_________ 、_________ 千克。
3. 设a,b使得6位数 a2000b 能被26整除。所有这样的6位数是________。
4. 把右面8×8的方格纸沿格线剪成4块形状、大小都相同的图形,使得每一块上都有罗、牛、山3个字。在图上用实线画出剪的结果。
5. 某容器中装有盐水。老师让小强再倒入5%的盐水800克,以配成20%的盐水。但小强却错误地倒入了800克水。老师发现后说,不要紧,你再将第三种盐水400克倒入容器,就可得到20%的盐水了。那么第三种盐水的浓度是_________ %。
6. 设6个口袋分别装有18,19,21,23,25,34个小球。小王取走了其中的3袋,小李取走了另外的2袋。若小王得到的球的个数恰好是小李得到的球数的2倍,则小王得到的球的个数是_________ 。
7. 一水池装有甲、乙两个水管。乙管每小时排水量是甲管的75%。先用乙管排水5小时后,改用甲管排水,结果比只用乙管提前1小时把水池中的水排空;如用乙管排水120吨后再改用甲管排水,则比只用乙管可提前2小时把水池中的水全部排空。那么水池原有水_________ 吨。
8. 右图中,四边形FMCG和FDHG都是梯形。D为BC的中点,BE= BA,MF= MA,△ABC的面积为1。那么梯形FDHG的面积是_________ 。
9. A,B,C三辆汽车以相同的速度同时从甲市开往乙市。开车后1小时A车出了事故,B和C两车照常前进。A车停了半小时后以原来速度的4/5 继续前进。B,C两车行至距离甲市200千米处B车出了事故,C车照常前进。B车停了半小时后也以原来速度的4/5 继续前进。结果到达乙市的时间C车比B车早1小时,B车比A车早1小时,甲、乙两市的距离为_________ 千米。
10.右图中共有_________ 个不同的三角形。
11.设四个不同的正整数构成的四数组中,最小的数与其余三 数的平均值之和为17,而最大的数与其余三数的平均值之和为29。在满足上述条件的四数组中,其最大数的最大值是_________ 。
12.一队和二队两个施工队的人数之比为3:4,每人工作效率之比为5:4。两队同时分别接受两项工作量与条件完全相同的工程,结果二队比一队早完工9天。后来,由一队工人的2/3 与二队工人的1/3 组成新一队,其余的工人组成新二队。两支新队又同时分别接受两项工作量与条件完全相同的工程,结果新二队比新一队早完工6天。那么前后两次工程的工作量之比是_________ 。
接力竞赛
1.甲、乙两班各有一个图书室,共有303本书。已知甲班图书的5/13 和乙班图书的 1/4合在一起是95本,那么甲班图书有_________ 。
2.设上题答案数的各位数字之和为a。 小宁家的钟和学校的钟走的都正常,但小宁家的钟拨快了,而学校的钟是准确的。小宁按家里的钟8点a分离家去学校,走到学校时学校的钟是7点50分;中午,他按学校的钟12点时离校回家,到家时家里的钟正好是12点34分。如果小宁上学和下学路上用的时间是相同的,那么小宁家的钟拨快了_________ 分钟。
3.设上题答案数为b。 如图所示,大正方形里有一个长为b/4 、宽为1的长方形。长方形的顶点都在正方形的边上,而且长方形的对称轴与正方形的对角线重合,那么,正方形的面积是_____。
4.设上题答案数的整数部分为c。 把1/c 表示为两个不同的分数单位之和,那么共有_________ 种不同的表示方法(仅求和次序不同视为一种)。
5.设上题答案数为d。 当王力的年龄像李同现在这么大时,刘强的年龄比王力和李同他们现在的年龄之和小d岁。当刘强像王力现在这么大时,王力的年龄是_________ 岁。
6.设上题答案数为e。 将用2,3,5,e组成的所有的四位数(数字允许重复)从小到大排成一列,这列数的第56个是_________ 。
7.设上题答案数的个位数字为f。 有10个整数排成一个圆形,将每一个整数换成与它相邻两数的平均值,所得的结果如图所示。那么图中数f所占位置的原数是_________ 。
8.设上题答案数的2倍为g。 有一组正整数,其中任意两数之差的g倍都不小于它们的乘积。那么这组正整数最多有_________ 个。
1. 有 28位小朋友排成一行 .从左边开始数第 10位是爱华,从右边开始数他是第几位?
2. 纽约时间是香港时间减 13小时 .你与一位在纽约的朋友约定,纽约时间 4月 1日晚上 8时与他通电话,那么在香港你应几月几日几时给他打电话?
3. 名工人 5小时加工零件 90件,要在 10小时完成 540个零件的加工,需要工人多少人?
4. 大于 100的整数中,被 13除后商与余数相同的数有多少个?
5. 四个房间,每个房间里不少于 2人,任何三个房间里的人数不少 8人,这四个房间至少有多少人?
6. 在 1998的约数(或因数)中有两位数,其中最大的是哪个数?
7. 英文测验,小明前三次平均分是 88分,要想平均分达到 90分,他第四次最少要得几分?
8. 一个月最多有 5个星期日,在一年的 12个月中,有 5个星期日的月份最多有几个月?
9. 将 0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同 .
□ +□□ =□□□
问算式中的三位数最大是什么数?
10. 有一个号码是六位数,前四位是 2857,后两位记不清,即
2857□□
但是我记得,它能被 11和 13整除,请你算出后两位数 .
11. 某学校有学生 518人,如果男生增加 4%,女生减少 3人,总人数就增加 8人,那么原来男生比女生多几人?
12. 陈敏要购物三次,为了使每次都不产生 10元以下的找赎, 5元、 2元、 1元的硬币最少总共要带几个?
(硬币只有 5元、 2元、 1元三种 .)
13. 右图是三个半圆构成的图形,其中小圆直径为 8,中圆直径为 12,
14.幼儿园的老师把一些画片分给 A, B, C三个班,每人都能分到 6张 .如果只分给 B班,每人能得 15张,如果只分给 C班,每人能得 14张,问只分给 A班,每人能得几张?
15. 两人做一种游戏:轮流报数,报出的数只能是 1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是 123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?
16.一本小说的页码,在印刷时必须用1989个铅字,在这一本书的页码中数字1出现多少次?
17.把23个数:3,33,333,…,33…3(23个3)相加,则所得的和的末四位数是多少?
18.将1、1、2、2、3、3、4、4这八个数字排成一个八位数,使得两个1之间有一个数字,两个2之间有二个数字,两个3之间有三个数字,两个4之间有四个数字,那么这样的八位数中最小的是?
19.从 1, 2, 3,…,2004, 2005这些自然数中,最多可以取几个数,才能使其中每两个数的差不等于4?
20.有一个电话号码是六位数,其中左边三个数字相同,右边三个数字是三个连续的自然数,六个数字之和恰好等于末尾的两位数,这个电话号码是多少?
21.若a为自然数,证明10│(a2005-a1949).
22.给出12个彼此不同的两位数,证明:由它们中一定可以选出两个数,它们的差是两个相同数字组成的两位数.
23.求被3除余2,被5除余3,被7除余5的最小三位数.
24.设2n+1是质数,证明:12,22,…,n2被2n+1除所得的余数各不相同.
25.试证不小于5的质数的平方与1的差必能被24整除.
26. 有甲乙两种糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,现要得到浓度是82.5%的糖水100克,问每种应取多少克?
27. 一个容器里装有10升纯酒精,倒出1升后,用水加满,再倒出1升,用水加满,再倒出1升,用水加满,这时容器内的酒精溶液的浓度是?
28. 有若干千克4%的盐水,蒸发了一些水分后变成了10%的盐水,在加300克4%的盐水,混合后变成6.4%的盐水,问最初的盐水是多少千克?
29.已知盐水若干克,第一次加入一定量的水后,盐水浓度变为3%,第二次加入同样多的水后,盐水浓度变为2%。求第三次加入同样多的水后盐水的浓度。
30.有A、B、C三种盐水,按A与B的数量之比为2:1混合,得到浓度为13%的盐水;按A与B的数量之比为1:2混合,得到浓度为14%的盐水;按A、B、C的数量之比为1:1:3混合,得到浓度为10.2%的盐水,问盐水C的浓度是多少?
[ 答案 ]
1. 从右边开始数,他是第 19位 .
2. 4 月2 日上午9 时.
3.9名工人 .
4.有 5个 .
13× 7+7=98< 100,商数从 8开始 .但余数小于 13,最大是 12,有 13× 8+ 8= 112, 13× 9+ 9= 126, 13× 10+ 10=140, 13× 11+ 11=154, 13× 12+ 12= 168,共 5个数 .
5.至少有 11人 .
人数最多的房间至少有 3人,其余三个房间至少有 8人,总共至少有 11人 .
6.最大的两位约数是 74.
1998= 2× 3× 3× 3× 37
7.第四次最少要得 96分 .
88+( 90- 88)× 4=96(分)
8.最多有 5个月有 5个星期日 .
1月 1日是星期日,全年就有 53个星期日 .每月至少有 4个星期日, 53-4× 12=5,多出 5个星期日,在 5个月中 .
9.105.
和的前两位是 1和 0,两位数的十位是 9.因此加数的个位最大是 7和 8.
10.后两位数是 14.
285700÷( 11× 13) =1997余 129
余数 129再加 14就能被 143整除 .
11.男生比女生多 32人 .
男生 4%是 3+ 8=11(人),男生有 11÷ 4% =275(人),女生有 518-275=243(人), 275-243=32(人) .
12.最少 5元、 2元、 1元的硬币共 11个 .
购物 3次,必须备有 3个 5元、 3个 2元、 3个 1元 .为了应付 3次都是 4元,至少还要 2个硬币,例如 2元和 1元各一个,因此,总数 11个是不能少的 .准备 5元 3个, 2元 5个, 1元 3个,或者 5元 3个, 2元 4个, 1元 4个就能三次支付 1元至 9元任何钱数 .
14.A班每人能得 35张 .
设三班总人数是 1,则 B班人数是 6/15, C班人数是 6/14,因此 A班人数是:
15.第一个数报 6.
对方至少要报数 1,至多报数 8,不论对方报什么数,你总是可以做到两人所报数之和为 9.
123÷ 9= 13…… 6.
你第一次报数 6.以后,对方报数后,你再报数,使一轮中两人报的数和为 9,你就能在 13轮后达到 123.
16.4
17.甲26又2/3天,乙40天
18.21
19.14又1/3
20.10
21.甲、乙两地相距540千米,原来火车的速度为每小时90千米。
22.750
23.384
24.600
25.一班48人,二班42人
26.15
27.82
28.312
29.最少5个,最多7个
30.784
5. 1.某工厂原用长4米、宽1米的铁皮围成没有底和顶的正方体形状的产品存放处(底和顶用其它材料),恰好够存放一周产品。现在产品增加了27%,能否还用原来的铁皮围成存放处,装下现在一周的产品?
2、一项工程,甲单独做需要10天,乙单独做需要15天,如果两人合作,工作效率就要降低,甲只能完成原来的4/5,乙只能完成原来的9/10,现在要8天完成这项工程,两人合作的天数尽可能少,那么两人合作多少天?
3、一辆汽车以每小时40千米的速度从甲城开往乙城,返回时用原速度走了全程的3/4还多5千米,再改用每小时30千米的速度,走完余下的路程,因此返回甲城的时间比前往乙城的时间多用了10分钟,甲乙两城相距多远?
4、某市居民自来水收费标准如下:每户每月用水4吨以下,每吨1.8元。当超过4吨时,超过部分每吨3.00元。某月甲、乙两户共交水费26.40元,用水量之比是5:3,请你算一算,甲、乙两户各应交水费多少元?
1.125*3+125*5+25*3+25
2.9999*3+101*11*(101-92)
3.(23/4-3/4)*(3*6+2)
4. 3/7 × 49/9 - 4/3
5. 8/9 × 15/36 + 1/27
6. 12× 5/6 – 2/9 ×3
7. 8× 5/4 + 1/4
8. 6÷ 3/8 – 3/8 ÷6
9. 4/7 × 5/9 + 3/7 × 5/9
10. 5/2 -( 3/2 + 4/5 )
11. 7/8 + ( 1/8 + 1/9 )
12. 9 × 5/6 + 5/6
13. 3/4 × 8/9 - 1/3
14. 7 × 5/49 + 3/14
15. 6 ×( 1/2 + 2/3 )
16. 8 × 4/5 + 8 × 11/5
17. 31 × 5/6 – 5/6
18. 9/7 - ( 2/7 – 10/21 )
19. 5/9 × 18 – 14 × 2/7
20. 4/5 × 25/16 + 2/3 × 3/4
21. 14 × 8/7 – 5/6 × 12/15
22. 17/32 – 3/4 × 9/24
23. 3 × 2/9 + 1/3
24. 5/7 × 3/25 + 3/7
25. 3/14 ×× 2/3 + 1/6
26. 1/5 × 2/3 + 5/6
27. 9/22 + 1/11 ÷ 1/2
28. 5/3 × 11/5 + 4/3
29. 45 × 2/3 + 1/3 × 15
30. 7/19 + 12/19 × 5/6
31. 1/4 + 3/4 ÷ 2/3
32. 8/7 × 21/16 + 1/2
33. 101 × 1/5 – 1/5 × 21
34.50+160÷40
35.120-144÷18+35
36.347+45×2-4160÷52
37(58+37)÷(64-9×5)
38.95÷(64-45)
39.178-145÷5×6+42
40.812-700÷(9+31×11)
41.85+14×(14+208÷26)
43.120-36×4÷18+35
44.(58+37)÷(64-9×5)
45.(6.8-6.8×0.55)÷8.5
46.0.12× 4.8÷0.12×4.8
47.(3.2×1.5+2.5)÷1.6
48.6-1.6÷4= 5.38+7.85-5.37=
49.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
50.6.5×(4.8-1.2×4)=
51.5.8×(3.87-0.13)+4.2×3.74
52.32.52-(6+9.728÷3.2)×2.5
53.[(7.1-5.6)×0.9-1.15] ÷2.5
54.5.4÷[2.6×(3.7-2.9)+0.62]
55.12×6÷(12-7.2)-6
56.12×6÷7.2-6
57.0.68×1.9+0.32×1.9
58.58+370)÷(64-45)
59.420+580-64×21÷28
60.136+6×(65-345÷23)
15-10.75×0.4-5.7
62.18.1+(3-0.299÷0.23)×1
63.(6.8-6.8×0.55)÷8.5
64.0.12× 4.8÷0.12×4.8
65.(3.2×1.5+2.5)÷1.6
66.3.2×6+(1.5+2.5)÷1.6
67.0.68×1.9+0.32×1.9
68.10.15-10.75×0.4-5.7
69.5.8×(3.87-0.13)+4.2×3.74
70.32.52-(6+9.728÷3.2)×2.5
71.[(7.1-5.6)×0.9-1.15] ÷2.5
72.5.4÷[2.6×(3.7-2.9)+0.62]
73.12×6÷(12-7.2)-6
74.12×6÷7.2-6
75.33.02-(148.4-90.85)÷2.5
1) 76.(25%-695%-12%)*36
77./4*3/5+3/4*2/5
78.1-1/4+8/9/7/9
79.+1/6/3/24+2/21
80./15*3/5
81.3/4/9/10-1/6
82./3+1/2)/5/6-1/3]/1/7
83./5+3/5/2+3/4
84.(2-2/3/1/2)]*2/5
85.+5268.32-2569
86.3+456-52*8
87.5%+6325
88./2+1/3+1/4
2) 89+456-78
3) 5%+. 3/7 × 49/9 - 4/3
4) 9 × 15/36 + 1/27
5) 2× 5/6 – 2/9 ×3
6) 3× 5/4 + 1/4
7) 94÷ 3/8 – 3/8 ÷6
8) 95/7 × 5/9 + 3/7 × 5/9
9) 6/2 -( 3/2 + 4/5 )
10) 8 + ( 1/8 + 1/9 )
11) 8 × 5/6 + 5/6
12) 1/4 × 8/9 - 1/3
13) 10 × 5/49 + 3/14
14) 1.5 ×( 1/2 + 2/3 )
15) 2/9 × 4/5 + 8 × 11/5
16) 3.1 × 5/6 – 5/6
17) 4/7 - ( 2/7 – 10/21 )
18) 19 × 18 – 14 × 2/7
19) 5 × 25/16 + 2/3 × 3/4
20) 4 × 8/7 – 5/6 × 12/15
21) 7/32 – 3/4 × 9/24
22) 1、 2/3÷1/2-1/4×2/5
2、 2-6/13÷9/26-2/3
3、 2/9+1/2÷4/5+3/8
4、 10÷5/9+1/6×4
5、 1/2×2/5+9/10÷9/20
6、 5/9×3/10+2/7÷2/5
7、 1/2+1/4×4/5-1/8
8、 3/4×5/7×4/3-1/2
9、 23-8/9×1/27÷1/27
10、 8×5/6+2/5÷4
11、 1/2+3/4×5/12×4/5
12、 8/9×3/4-3/8÷3/4
13、 5/8÷5/4+3/23÷9/11
23) 1.2×2.5+0.8×2.5
24) 8.9×1.25-0.9×1.25
25) 12.5×7.4×0.8
26) 9.9×6.4-(2.5+0.24)(27) 6.5×9.5+6.5×0.5
0.35×1.6+0.35×3.4
0.25×8.6×4
6.72-3.28-1.72
0.45+6.37+4.55
5.4+6.9×3-(25-2.5)2×41846-620-380
4.8×46+4.8×54
0.8+0.8×2.5
1.25×3.6×8×2.5-12.5×2.4
28×12.5-12.5×20
23.65-(3.07+3.65)
(4+0.4×0.25)8×7×1.25
1.65×99+1.65
27.85-(7.85+3.4)
48×1.25+50×1.25×0.2×8
7.8×9.9+0.78
(1010+309+4+681+6)×12
3×9146×782×6×854
5.15×7/8+6.1-0.60625
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3
11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35
41.(58+37)÷(64-9×5)
42.(6.8-6.8×0.55)÷8.5
43.0.12× 4.8÷0.12×4.8
44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
45.6-1.6÷4= 5.38+7.85-5.37=
46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5
51.[(7.1-5.6)×0.9-1.15] ÷2.5
52.5.4÷[2.6×(3.7-2.9)+0.62]
53.12×6÷(12-7.2)-6 (4)12×6÷7.2-6
102×4.5
7.8×6.9+2.2×6.9
5.6×0.25
8×(20-1.25)
1)127+352+73+44 (2)89+276+135+33
(1)25+71+75+29 +88 (2)243+89+111+57
9405-2940÷28×21
920-1680÷40÷7
690+47×52-398
148+3328÷64-75
360×24÷32+730
2100-94+48×54
51+(2304-2042)×23
4215+(4361-716)÷81
(247+18)×27÷25
36-720÷(360÷18)
1080÷(63-54)×80
(528+912)×5-6178
8528÷41×38-904
264+318-8280÷69
(174+209)×26- 9000
814-(278+322)÷15
1406+735×9÷45
3168-7828÷38+504
796-5040÷(630÷7)
285+(3000-372)÷36
1+5/6-19/12
3x(-9)+7x(-9
(-54)x1/6x(-1/3)
1.18.1+(3-0.299÷0.23)×1
2.(6.8-6.8×0.55)÷8.5
3.0.12× 4.8÷0.12×4.8
4.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
5.6-1.6÷4= 5.38+7.85-5.37=
6.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
7.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
8.10.15-10.75×0.4-5.7
9.5.8×(3.87-0.13)+4.2×3.74
10.32.52-(6+9.728÷3.2)×2.5
11.[(7.1-5.6)×0.9-1.15] ÷2.5
12.5.4÷[2.6×(3.7-2.9)+0.62]
13.12×6÷(12-7.2)-6
14.12×6÷7.2-6
15.33.02-(148.4-90.85)÷2.5
1. 甲乙二人一起做数学题,如果甲再做4道和乙做的一样多,如果乙再做6道就是甲做的3倍,则甲做了多少道题?乙做了多少道题?
2. 游客在10时15分从码头划船逆流而上,要求在当天不迟于13点返回,以知水流速度为1.4千米/小时,船在静水的速度是3千米/小时.如果游客每划30分钟就休息15分钟而且只能在某次休息后往回划,那么他应该怎样安排才能使划离码头的距离最远?
3. 某次数学比赛,有两种评分方法:第一种答对一题得5分,不答得2分,答错不扣分;第二种先给40分,答对一题得3分,不答不得分,答错扣1分,某学生用两种方法评分均得81分,请问这次比赛共有多少道题?
4. 工程队要修一条水渠:如果每天多修8米,可提前4天完工;如果每天少修8米,则延后4天完工。请问这条水渠的长度?
一批粮食,运走全部的2/3(三分之二)少1吨.这时剩下的与原存的比是3:5.这批粮食原来有多少吨?
把两筐苹果分给甲、乙、丙三个班。甲班分得总量的2/5,剩下的按5:7分给乙、丙班。已知第二筐苹果重量是第一筐的9/10 ,且比第一筐少5千克。甲、乙、丙班分得的苹果分别是_________ 、_________ 、_________ 千克。
3. 设a,b使得6位数 a2000b 能被26整除。所有这样的6位数是________。
4. 把右面8×8的方格纸沿格线剪成4块形状、大小都相同的图形,使得每一块上都有罗、牛、山3个字。在图上用实线画出剪的结果。
5. 某容器中装有盐水。老师让小强再倒入5%的盐水800克,以配成20%的盐水。但小强却错误地倒入了800克水。老师发现后说,不要紧,你再将第三种盐水400克倒入容器,就可得到20%的盐水了。那么第三种盐水的浓度是_________ %。
6. 设6个口袋分别装有18,19,21,23,25,34个小球。小王取走了其中的3袋,小李取走了另外的2袋。若小王得到的球的个数恰好是小李得到的球数的2倍,则小王得到的球的个数是_________ 。
7. 一水池装有甲、乙两个水管。乙管每小时排水量是甲管的75%。先用乙管排水5小时后,改用甲管排水,结果比只用乙管提前1小时把水池中的水排空;如用乙管排水120吨后再改用甲管排水,则比只用乙管可提前2小时把水池中的水全部排空。那么水池原有水_________ 吨。
8. 右图中,四边形FMCG和FDHG都是梯形。D为BC的中点,BE= BA,MF= MA,△ABC的面积为1。那么梯形FDHG的面积是_________ 。
9. A,B,C三辆汽车以相同的速度同时从甲市开往乙市。开车后1小时A车出了事故,B和C两车照常前进。A车停了半小时后以原来速度的4/5 继续前进。B,C两车行至距离甲市200千米处B车出了事故,C车照常前进。B车停了半小时后也以原来速度的4/5 继续前进。结果到达乙市的时间C车比B车早1小时,B车比A车早1小时,甲、乙两市的距离为_________ 千米。
10.右图中共有_________ 个不同的三角形。
11.设四个不同的正整数构成的四数组中,最小的数与其余三 数的平均值之和为17,而最大的数与其余三数的平均值之和为29。在满足上述条件的四数组中,其最大数的最大值是_________ 。
12.一队和二队两个施工队的人数之比为3:4,每人工作效率之比为5:4。两队同时分别接受两项工作量与条件完全相同的工程,结果二队比一队早完工9天。后来,由一队工人的2/3 与二队工人的1/3 组成新一队,其余的工人组成新二队。两支新队又同时分别接受两项工作量与条件完全相同的工程,结果新二队比新一队早完工6天。那么前后两次工程的工作量之比是_________ 。
接力竞赛
1.甲、乙两班各有一个图书室,共有303本书。已知甲班图书的5/13 和乙班图书的 1/4合在一起是95本,那么甲班图书有_________ 。
2.设上题答案数的各位数字之和为a。 小宁家的钟和学校的钟走的都正常,但小宁家的钟拨快了,而学校的钟是准确的。小宁按家里的钟8点a分离家去学校,走到学校时学校的钟是7点50分;中午,他按学校的钟12点时离校回家,到家时家里的钟正好是12点34分。如果小宁上学和下学路上用的时间是相同的,那么小宁家的钟拨快了_________ 分钟。
3.设上题答案数为b。 如图所示,大正方形里有一个长为b/4 、宽为1的长方形。长方形的顶点都在正方形的边上,而且长方形的对称轴与正方形的对角线重合,那么,正方形的面积是_____。
4.设上题答案数的整数部分为c。 把1/c 表示为两个不同的分数单位之和,那么共有_________ 种不同的表示方法(仅求和次序不同视为一种)。
5.设上题答案数为d。 当王力的年龄像李同现在这么大时,刘强的年龄比王力和李同他们现在的年龄之和小d岁。当刘强像王力现在这么大时,王力的年龄是_________ 岁。
6.设上题答案数为e。 将用2,3,5,e组成的所有的四位数(数字允许重复)从小到大排成一列,这列数的第56个是_________ 。
7.设上题答案数的个位数字为f。 有10个整数排成一个圆形,将每一个整数换成与它相邻两数的平均值,所得的结果如图所示。那么图中数f所占位置的原数是_________ 。
8.设上题答案数的2倍为g。 有一组正整数,其中任意两数之差的g倍都不小于它们的乘积。那么这组正整数最多有_________ 个。
1. 有 28位小朋友排成一行 .从左边开始数第 10位是爱华,从右边开始数他是第几位?
2. 纽约时间是香港时间减 13小时 .你与一位在纽约的朋友约定,纽约时间 4月 1日晚上 8时与他通电话,那么在香港你应几月几日几时给他打电话?
3. 名工人 5小时加工零件 90件,要在 10小时完成 540个零件的加工,需要工人多少人?
4. 大于 100的整数中,被 13除后商与余数相同的数有多少个?
5. 四个房间,每个房间里不少于 2人,任何三个房间里的人数不少 8人,这四个房间至少有多少人?
6. 在 1998的约数(或因数)中有两位数,其中最大的是哪个数?
7. 英文测验,小明前三次平均分是 88分,要想平均分达到 90分,他第四次最少要得几分?
8. 一个月最多有 5个星期日,在一年的 12个月中,有 5个星期日的月份最多有几个月?
9. 将 0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同 .
□ +□□ =□□□
问算式中的三位数最大是什么数?
10. 有一个号码是六位数,前四位是 2857,后两位记不清,即
2857□□
但是我记得,它能被 11和 13整除,请你算出后两位数 .
11. 某学校有学生 518人,如果男生增加 4%,女生减少 3人,总人数就增加 8人,那么原来男生比女生多几人?
12. 陈敏要购物三次,为了使每次都不产生 10元以下的找赎, 5元、 2元、 1元的硬币最少总共要带几个?
(硬币只有 5元、 2元、 1元三种 .)
13. 右图是三个半圆构成的图形,其中小圆直径为 8,中圆直径为 12,
14.幼儿园的老师把一些画片分给 A, B, C三个班,每人都能分到 6张 .如果只分给 B班,每人能得 15张,如果只分给 C班,每人能得 14张,问只分给 A班,每人能得几张?
15. 两人做一种游戏:轮流报数,报出的数只能是 1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是 123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?
16.一本小说的页码,在印刷时必须用1989个铅字,在这一本书的页码中数字1出现多少次?
17.把23个数:3,33,333,…,33…3(23个3)相加,则所得的和的末四位数是多少?
18.将1、1、2、2、3、3、4、4这八个数字排成一个八位数,使得两个1之间有一个数字,两个2之间有二个数字,两个3之间有三个数字,两个4之间有四个数字,那么这样的八位数中最小的是?
19.从 1, 2, 3,…,2004, 2005这些自然数中,最多可以取几个数,才能使其中每两个数的差不等于4?
20.有一个电话号码是六位数,其中左边三个数字相同,右边三个数字是三个连续的自然数,六个数字之和恰好等于末尾的两位数,这个电话号码是多少?
21.若a为自然数,证明10│(a2005-a1949).
22.给出12个彼此不同的两位数,证明:由它们中一定可以选出两个数,它们的差是两个相同数字组成的两位数.
23.求被3除余2,被5除余3,被7除余5的最小三位数.
24.设2n+1是质数,证明:12,22,…,n2被2n+1除所得的余数各不相同.
25.试证不小于5的质数的平方与1的差必能被24整除.
26. 有甲乙两种糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,现要得到浓度是82.5%的糖水100克,问每种应取多少克?
27. 一个容器里装有10升纯酒精,倒出1升后,用水加满,再倒出1升,用水加满,再倒出1升,用水加满,这时容器内的酒精溶液的浓度是?
28. 有若干千克4%的盐水,蒸发了一些水分后变成了10%的盐水,在加300克4%的盐水,混合后变成6.4%的盐水,问最初的盐水是多少千克?
29.已知盐水若干克,第一次加入一定量的水后,盐水浓度变为3%,第二次加入同样多的水后,盐水浓度变为2%。求第三次加入同样多的水后盐水的浓度。
30.有A、B、C三种盐水,按A与B的数量之比为2:1混合,得到浓度为13%的盐水;按A与B的数量之比为1:2混合,得到浓度为14%的盐水;按A、B、C的数量之比为1:1:3混合,得到浓度为10.2%的盐水,问盐水C的浓度是多少?
[ 答案 ]
1. 从右边开始数,他是第 19位 .
2. 4 月2 日上午9 时.
3.9名工人 .
4.有 5个 .
13× 7+7=98< 100,商数从 8开始 .但余数小于 13,最大是 12,有 13× 8+ 8= 112, 13× 9+ 9= 126, 13× 10+ 10=140, 13× 11+ 11=154, 13× 12+ 12= 168,共 5个数 .
5.至少有 11人 .
人数最多的房间至少有 3人,其余三个房间至少有 8人,总共至少有 11人 .
6.最大的两位约数是 74.
1998= 2× 3× 3× 3× 37
7.第四次最少要得 96分 .
88+( 90- 88)× 4=96(分)
8.最多有 5个月有 5个星期日 .
1月 1日是星期日,全年就有 53个星期日 .每月至少有 4个星期日, 53-4× 12=5,多出 5个星期日,在 5个月中 .
9.105.
和的前两位是 1和 0,两位数的十位是 9.因此加数的个位最大是 7和 8.
10.后两位数是 14.
285700÷( 11× 13) =1997余 129
余数 129再加 14就能被 143整除 .
11.男生比女生多 32人 .
男生 4%是 3+ 8=11(人),男生有 11÷ 4% =275(人),女生有 518-275=243(人), 275-243=32(人) .
12.最少 5元、 2元、 1元的硬币共 11个 .
购物 3次,必须备有 3个 5元、 3个 2元、 3个 1元 .为了应付 3次都是 4元,至少还要 2个硬币,例如 2元和 1元各一个,因此,总数 11个是不能少的 .准备 5元 3个, 2元 5个, 1元 3个,或者 5元 3个, 2元 4个, 1元 4个就能三次支付 1元至 9元任何钱数 .
14.A班每人能得 35张 .
设三班总人数是 1,则 B班人数是 6/15, C班人数是 6/14,因此 A班人数是:
15.第一个数报 6.
对方至少要报数 1,至多报数 8,不论对方报什么数,你总是可以做到两人所报数之和为 9.
123÷ 9= 13…… 6.
你第一次报数 6.以后,对方报数后,你再报数,使一轮中两人报的数和为 9,你就能在 13轮后达到 123.
16.4
17.甲26又2/3天,乙40天
18.21
19.14又1/3
20.10
21.甲、乙两地相距540千米,原来火车的速度为每小时90千米。
22.750
23.384
24.600
25.一班48人,二班42人
26.15
27.82
28.312
29.最少5个,最多7个
30.784
5. 1.某工厂原用长4米、宽1米的铁皮围成没有底和顶的正方体形状的产品存放处(底和顶用其它材料),恰好够存放一周产品。现在产品增加了27%,能否还用原来的铁皮围成存放处,装下现在一周的产品?
2、一项工程,甲单独做需要10天,乙单独做需要15天,如果两人合作,工作效率就要降低,甲只能完成原来的4/5,乙只能完成原来的9/10,现在要8天完成这项工程,两人合作的天数尽可能少,那么两人合作多少天?
3、一辆汽车以每小时40千米的速度从甲城开往乙城,返回时用原速度走了全程的3/4还多5千米,再改用每小时30千米的速度,走完余下的路程,因此返回甲城的时间比前往乙城的时间多用了10分钟,甲乙两城相距多远?
4、某市居民自来水收费标准如下:每户每月用水4吨以下,每吨1.8元。当超过4吨时,超过部分每吨3.00元。某月甲、乙两户共交水费26.40元,用水量之比是5:3,请你算一算,甲、乙两户各应交水费多少元?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1:1+1、2:2+2…………以此类推。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询