求解?请写出详细过程。谢谢。
2个回答
2013-04-09
展开全部
令u = tan(x/2),cosx = (1 - u²)/(1 + u²),dx = 2du/(1 + u²)
∫ 1/(2 + cosx) * dx
= ∫ 1/[2 + (1 - u²)/(1 + u²)] * 2du/(1 + u²)
= ∫ (1 + u²)/(2 + 2u² + 1 - u²) * 2du/(1 + u²)
= 2∫ du/(u² + 3),用公式:∫ dx/(x² + a²) = (1/a)arctan(x/a) + C,可得
= (2/√3)arctan(u/√3) + C
= (2/√3)arctan[(1/√3)tan(x/2)] + C,
另解:
∫ dx/(2 + cosx)
= ∫ dx/[2sin²(x/2) + 2cos²(x/2) + cos²(x/2) - sin²(x/2)],公式cos2x = cos²x - sin²x
= ∫ dx/[3cos²(x/2) + sin²(x/2)],分子和分母再除以cos²(x/2)
= 2∫ sec²(x/2)/[3 + tan²(x/2)] d(x/2)
= 2∫ d[tan(x/2)]/[3 + tan²(x/2)],凑sec²(x/2) d(x/2) = d[tan(x/2)]
= 2 * 1/√3 * arctan[tan(x/2)/√3] + C,公式:∫ dx/(x² + a²) = (1/a)arctan(x/a) + C
= (2/√3)arctan[(1/√3)tan(x/2)] + C
∫ 1/(2 + cosx) * dx
= ∫ 1/[2 + (1 - u²)/(1 + u²)] * 2du/(1 + u²)
= ∫ (1 + u²)/(2 + 2u² + 1 - u²) * 2du/(1 + u²)
= 2∫ du/(u² + 3),用公式:∫ dx/(x² + a²) = (1/a)arctan(x/a) + C,可得
= (2/√3)arctan(u/√3) + C
= (2/√3)arctan[(1/√3)tan(x/2)] + C,
另解:
∫ dx/(2 + cosx)
= ∫ dx/[2sin²(x/2) + 2cos²(x/2) + cos²(x/2) - sin²(x/2)],公式cos2x = cos²x - sin²x
= ∫ dx/[3cos²(x/2) + sin²(x/2)],分子和分母再除以cos²(x/2)
= 2∫ sec²(x/2)/[3 + tan²(x/2)] d(x/2)
= 2∫ d[tan(x/2)]/[3 + tan²(x/2)],凑sec²(x/2) d(x/2) = d[tan(x/2)]
= 2 * 1/√3 * arctan[tan(x/2)/√3] + C,公式:∫ dx/(x² + a²) = (1/a)arctan(x/a) + C
= (2/√3)arctan[(1/√3)tan(x/2)] + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询