如图,已知AB是圆O的直径,PB为圆O的切线,B为切点,OP垂直弦BC于点D且交圆O于点E 求证角OPB=

角AEC... 角AEC 展开
mbcsjs
2013-04-09 · TA获得超过23.4万个赞
知道顶级答主
回答量:7.6万
采纳率:77%
帮助的人:3.2亿
展开全部

(1)证明:∵AB是⊙O的直径,PB为⊙O的切线,
∴PB⊥AB.
∴∠OPB+∠POB=90°.
∵OP⊥BC,
∴∠ABC+∠POB=90°.
∴∠ABC=∠OPB.
又∠AEC=∠ABC,
∴∠OPB=∠AEC.

(2)连接OC.
∵C为半圆弧ACB的三等分点,
∴∠AOC=60°.
∴∠ABC=∠AEC=∠OPB=30°.
由(1),得∠POB=90°-∠OPB=60°.
∴∠ECB=30°.
∴∠ABC=∠ECB=30°.
∴AB∥CE.
∵AB是⊙O的直径,
∴AC⊥BC.
又 OP⊥弦BC于点D且交⊙O于点E,
∴AC∥OE.
∴四边形AOEC是平行四边形.
又 OA=OE,
∴四边形AOEC是菱形.

guanziyin
2013-04-09 · TA获得超过485个赞
知道答主
回答量:73
采纳率:0%
帮助的人:63万
展开全部
1)证明:∵AB是⊙O的直径,PB为⊙O的切线,
∴PB⊥AB.
∴∠OPB+∠POB=90°.(1分)
∵OP⊥BC,
∴∠ABC+∠POB=90°.
∴∠ABC=∠OPB.(2分)
又∠AEC=∠ABC,
∴∠OPB=∠AEC.(3分)
(2)解:四边形AOEC是菱形.
证法一:∵OP⊥弦BC于点D且交⊙O于点E,
∴弧CE =弧BE (4分)
∵C为弧ACB 的三等分点,
∴ 弧AC= 弧CE=弧BE
∴∠ABC=∠ECB.(5分)
∴AB∥CE.(6分)
∵AB是⊙O的直径,
∴AC⊥BC.(7分)
又 OP⊥弦BC于点D且交⊙O于点E,
∴AC∥OE.(8分)
∴四边形AOEC是平行四边形.(9分)
又 OA=OE,
∴四边形AOEC是菱形.(10分)
证法二:连接OC.
∵C为半圆弧ACB的三等分点,
∴∠AOC=60°.
∴∠ABC=∠AEC=∠OPB=30°.
由(1),得∠POB=90°-∠OPB=60°.
∴∠ECB=30°.
∴∠ABC=∠ECB=30°.
∴AB∥CE.
∵AB是⊙O的直径,
∴AC⊥BC.
又 OP⊥弦BC于点D且交⊙O于点E,
∴AC∥OE.
∴四边形AOEC是平行四边形.
又 OA=OE,
∴四边形AOEC是菱形.
证法三:连接OC,则OC=OA=OE.
∵C为半圆弧ACB 的三等分点,
∴∠AOC=60°.
∴△AOC为等边三角形.
∴AC=AO.
∵OP⊥弦BC于点D且交⊙O于点E,
∴ 弧CE=弧BE
∵C为半圆弧ACB的三等分点,
∴弧AC=弧CE =弧BE
∴AC=CE.
∴AC=CE=OA=OE.
∴四边形AOEC是菱形.
来自:求助得到的回答
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式