
急急急急!!!!请问怎么计算 3/(1!+ 2!+ 3!)+ 4/(2!+ 3!+ 4!) +…… +2013/(2011!+ 2012!+ 2013!)=?
2个回答
展开全部
(n+2)/[n!+(n+1)!+(n+2)!]
=(n+2)/﹛n![1+(n+1)+(n+1)(n+2)]﹜
=(n+2)/[n!(n+2)²]
=1/[n!(n+2)]
=(n+1)/[(n+2)!]
=[(n+2)-1]/[(n+2)!]
=1/(n+1)!-1/(n+2)!
原式=1/2-1/2013!
=(n+2)/﹛n![1+(n+1)+(n+1)(n+2)]﹜
=(n+2)/[n!(n+2)²]
=1/[n!(n+2)]
=(n+1)/[(n+2)!]
=[(n+2)-1]/[(n+2)!]
=1/(n+1)!-1/(n+2)!
原式=1/2-1/2013!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询