各位,求过程…求函数y=2cosxsin(x+兀/3)-根号3sin^2x+sinxcosx的周期、单调区间及最值。 30

良驹绝影
2013-04-10 · TA获得超过13.6万个赞
知道大有可为答主
回答量:2.8万
采纳率:80%
帮助的人:1.3亿
展开全部
y=2cosxsin(x+π/3)-√3sin²x+sinxcosx
y=2cosxsin(x+π/3)-2sinx[(√3/2)sinx-(1/2)cosx)]
y=2cosxsin(x+π/3)+2sinxcos(x+π/3)]
y=2sin(2x+π/3)

函数周期是2π/2=π
最大值是2,最小值是-2
递增区间是:2kπ-π/2≤2x+π/3≤2kπ+π/2
即:kπ-5π/12≤x≤kπ+π/12
增区间是:[kπ-5π/12,kπ+π/12],其中k∈Z
递减区间是:2kπ+π/2≤2x+π/3≤2kπ+3π/2
得减区间是:[kπ+π/12,kπ+7π/12],其中k∈Z
wangcai3882
2013-04-10 · 知道合伙人教育行家
wangcai3882
知道合伙人教育行家
采纳数:20214 获赞数:108207
本人擅长中学阶段数、理、化、生等理科知识,尤其是数学。高中时曾参加全国数学竞赛并获奖,期望能为你答疑

向TA提问 私信TA
展开全部
解:
y=2cosxsin(x+π/3)-√3sin^2x+sinxcosx
=2cosx(sinx*1/2+cosx*√3/2)-√3sin²x+sinxcosx
=cosxsinx+√3cos²x-√3sin²x+sinxcosx
=2sinxcosx+√3(cosx²-sin²x)
=sin2x+√3cos2x
=2sin(2x+π/3)
(1)周期为T=2π/2=π
(2)
∵sinx在x∈[2kπ-π/2,2kπ+π/2]上单调递增
令2kπ-π/2≤2x+π/3≤2kπ+π/2
解得 kπ-5π/12≤x≤kπ+π/12
∴sin(2x+π/3)在x∈[kπ-5π/12,kπ+π/12]上单调递增
同理根据sinx在x∈[2kπ+π/2,2kπ+3π/2]上单调递减,得
sin(2x+π/3)在x∈[kπ+π/12,kπ+7π/12]上单调递减
因此y=2cosxsin(x+π/3)-√3sin^2x+sinxcosx的:
单调递增区间为:[kπ-5π/12,kπ+π/12] (k∈Z)
单调递减区间为:[kπ+π/12,kπ+7π/12] (k∈Z)
(3)
当sin(2x+π/3)=1时,有最大值2
当sin(2x+π/3)=-1时,有最小值-2

很高兴为您解答,满意请采纳,不明白请追问,祝学习进步O(∩_∩)O~~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式