
求证1/2!+2/3!+3/4!+...+n/(n+1)!=1-1/(n+1)!
1个回答
展开全部
n/(n+1)!
=[(n+1)-1]/(n+1)!
=(n+1)/(n+1)!-1/(n+1)!
=1/n!-1/(n+1)!
所以1/2!+2/3!+3/4!+...+n/(n+1)!=1-1/(n+1)!
=[(n+1)-1]/(n+1)!
=(n+1)/(n+1)!-1/(n+1)!
=1/n!-1/(n+1)!
所以1/2!+2/3!+3/4!+...+n/(n+1)!=1-1/(n+1)!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询