求证:f(x)在(a,b)内连续,则f(x)在(a,b)内一致连续的充分必要条件是f(a+0),f(a-o)存在

 我来答
algbraic
2013-04-11 · TA获得超过4924个赞
知道大有可为答主
回答量:1281
采纳率:100%
帮助的人:752万
展开全部
应该是f(a+0)与f(b-0)存在.

若f(x)在(a,b)一致连续.
对任意ε > 0, 存在δ > 0, 使对任意x, y∈(a,b)满足|x-y| < δ, 都有|f(x)-f(y)| < ε.
于是对任意x, y∈(a,a+δ), 都有|f(x)-f(y)| < ε.
由Cauchy收敛准则, f(a+0) = lim{x→a+} f(x)存在.
同理f(b-0) = lim{x→b-} f(x)也存在.

若f(a+0)与f(b-0)存在.
一种比较取巧的方法是补充定义f(a) = f(a+0), f(b) = f(b-0).
则f(x)成为[a,b]上的连续函数, 在[a,b]一致连续, 于是也在(a,b)一致连续.

比较平实的方法是分段处理.
任取ε > 0, 由f(a+0)存在, 根据Cauchy收敛准则,
存在δ1 > 0, 使对任意x, y∈(a,a+δ1), 都有|f(x)-f(y)| < ε.
同理存在δ2 > 0, 使对任意x, y∈(b-δ2,b), 都有|f(x)-f(y)| < ε.
又f(x)在[a+δ1/2,b-δ2/2]上连续, 故一致连续.
存在δ3 > 0, 使对任意x, y∈[a+δ1/2,b-δ2/2]满足|x-y| < δ3, 都有|f(x)-f(y)| < ε.
取δ = min{δ1/2, δ2/2, δ3}. 当|x-y| < δ, 可知x, y一定同时落在上述某个区间中.
无论在那个区间中, 都能得到|f(x)-f(y)| < ε. 故f(x)在(a,b)一致连续.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式