亥姆霍兹方程?
1个回答
展开全部
亥姆霍兹方程(Helmholtz
equation)是一条描述电磁波的椭圆偏微分方程,以德国物理学家亥姆霍
兹的名字命名。亥姆霍兹方程通常出现在涉及同时存在空间和时间依赖的偏微分方程的物理问题的研究中。因为它和波动方程的关系,亥姆霍兹方程出现在物理学中电磁辐射、地震学和声学研究这样的领域里的问题中。
如:电磁场中的
▽^2 E+k^2 E=0,
▽^2 H+k^2 H=0,
称为齐次亥姆霍兹方程,是在谐变场的情况下,E波和H波的波动方程。其中 :k^2=μω^2(ε-jσ/ω)
为波数,当忽略位移电流时,k^2=μεω^2;以上^2为平方。
数学上具有(▽2+k2)ψ
=f形式的双曲型偏微分方程。式中▽2为拉普拉斯算子,在直角坐标系中为;ψ为待求函数;k2为常数;f为源函数。当f等于零时称为齐次亥姆霍兹方程;f不等于零时称为非齐次亥姆霍兹方程。在电磁学中,当函数随时间作简谐变动时,波动方程化为亥姆霍兹方程。
equation)是一条描述电磁波的椭圆偏微分方程,以德国物理学家亥姆霍
兹的名字命名。亥姆霍兹方程通常出现在涉及同时存在空间和时间依赖的偏微分方程的物理问题的研究中。因为它和波动方程的关系,亥姆霍兹方程出现在物理学中电磁辐射、地震学和声学研究这样的领域里的问题中。
如:电磁场中的
▽^2 E+k^2 E=0,
▽^2 H+k^2 H=0,
称为齐次亥姆霍兹方程,是在谐变场的情况下,E波和H波的波动方程。其中 :k^2=μω^2(ε-jσ/ω)
为波数,当忽略位移电流时,k^2=μεω^2;以上^2为平方。
数学上具有(▽2+k2)ψ
=f形式的双曲型偏微分方程。式中▽2为拉普拉斯算子,在直角坐标系中为;ψ为待求函数;k2为常数;f为源函数。当f等于零时称为齐次亥姆霍兹方程;f不等于零时称为非齐次亥姆霍兹方程。在电磁学中,当函数随时间作简谐变动时,波动方程化为亥姆霍兹方程。
追问
谐变场是什么场?
系科仪器
2024-08-02 广告
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。...
点击进入详情页
本回答由系科仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |