高中反三角函数问题

arccosx+arccosy+arccosz=∏,求证x2+y2+z2+2xyz=1... arccosx+arccosy+arccosz=∏,求证x2+y2+z2+2xyz=1 展开
 我来答
百度网友2379ac6c9
2008-05-18 · TA获得超过1110个赞
知道小有建树答主
回答量:375
采纳率:0%
帮助的人:399万
展开全部
证明:(注:这里用“√(x)”表示根号下x,用“x^2”表示x平方)
设α=arccosx,β=arccosy,γ=arccosz,则
cosα=x,cosβ=y,cosγ=z,sinα=√(1-x^2),sinβ=√(1-y^2)
由题意:α+β+γ=π,所以,γ=π-(α+β)
所以,cosγ=cos[π-(α+β)]=-cos(α+β)=sinαsinβ-cosαcosβ
即z=√(1-x^2)√(1-y^2)-xy
z+xy=√(1-x^2)√(1-y^2)
两边平方得,化简得
x^2+y^2+z^2+2xyz=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式