三角函数降幂升幂公式推导
3个回答
展开全部
很高兴为您解答:
升幂公式:
sinx=2sin(x/2)cos(x/2)
cosx=2cos^2(x/2)-1=1-2sin^2(x/2)=cos^2(x/2)-sin^2(X/2)
tanx=2tan(x/2)/[1-tan^2(x/2)]
降幂公式:
cos²x=(1+cos2x)/2 sin²x=(1-cos2x)/2 tan²x= sin²x / cos²x=(1-cos2x)/(1+cos2x)
二倍角公式:
sin2x=2sinxcosx
cos2x=(cosx)^2-(sinx)^2=2(cosx)^2-1=1-2(sinx)^2
tan2x=2tanx/[1-(tanx)^2]
将二倍角公式中的2x换成x,相应的x换成x/2就得到升幂公式
半角公式:
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
谢谢,如果有帮助请记得采纳。
祝学习进步。
升幂公式:
sinx=2sin(x/2)cos(x/2)
cosx=2cos^2(x/2)-1=1-2sin^2(x/2)=cos^2(x/2)-sin^2(X/2)
tanx=2tan(x/2)/[1-tan^2(x/2)]
降幂公式:
cos²x=(1+cos2x)/2 sin²x=(1-cos2x)/2 tan²x= sin²x / cos²x=(1-cos2x)/(1+cos2x)
二倍角公式:
sin2x=2sinxcosx
cos2x=(cosx)^2-(sinx)^2=2(cosx)^2-1=1-2(sinx)^2
tan2x=2tanx/[1-(tanx)^2]
将二倍角公式中的2x换成x,相应的x换成x/2就得到升幂公式
半角公式:
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
谢谢,如果有帮助请记得采纳。
祝学习进步。
展开全部
三角函数的降幂公式是:cos²α
=
(
1+
cos2α
)
/
2
sin²α=(
1
-
cos2α
)
/
2
tan²α=(1-cos2α)/(1+cos2α)
运用二倍角公式就是升幂,将公式cos2α变形后可得到降幂公式:
cos2α=cos²α-sin²α=2cos²α-1=1-2sin²α
∴cos²α=(1+cos2α)/2
sin²α=(1-cos2α)/2
降幂公式,就是降低指数幂由2次变为1次的公式,可以减轻二次方的麻烦。
二倍角公式:
sin2α=2sinαcosα
cos2α=cos²α-sin²α=2cos²α-1=1-2sin²α
tan2α=2tanα/(1-tan²α)
=
(
1+
cos2α
)
/
2
sin²α=(
1
-
cos2α
)
/
2
tan²α=(1-cos2α)/(1+cos2α)
运用二倍角公式就是升幂,将公式cos2α变形后可得到降幂公式:
cos2α=cos²α-sin²α=2cos²α-1=1-2sin²α
∴cos²α=(1+cos2α)/2
sin²α=(1-cos2α)/2
降幂公式,就是降低指数幂由2次变为1次的公式,可以减轻二次方的麻烦。
二倍角公式:
sin2α=2sinαcosα
cos2α=cos²α-sin²α=2cos²α-1=1-2sin²α
tan2α=2tanα/(1-tan²α)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
升幂公式cos2x=cos²x-sin²x=2cos²x-1=1-2sin²x
降幂公式cos²x=(1+cos2x)/2
sin²x=(1-cos2x)/2
降幂公式cos²x=(1+cos2x)/2
sin²x=(1-cos2x)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |