2个回答
展开全部
x²-1>0, x>1 或 x<-1
又 x+x/√(x²-1)=x[1+1/√(x²-1)]=2√2>0
所以x>0
所以 x>1
x+x/√(x²-1)=2√2
x/√(x²-1)=2√2-x
x=√(x²-1)*(2√2-x)
x²=(x²-1)(8-4√2x+x²)
x²=8x²-4√2x^3+x^4-8+4√2x-x²
x^4-4√2x^3+6x^2+4√2x-8=0
x^4-√2x^3-3√2x^3+6x^2+4√2x-8=0
x^3(x-√2)-3√2x^2(x-√2)+4√2(x-√2)=0
(x-√2)(x^3-3√2x^2+4√2)=0
(x-√2)(x^3-√2x^2-2√2x^2+4√2)=0
(x-√2)[x^2(x-√2)-2√2(x+√2)(x-√2)]=0
(x-√2)^2(x^2-2√2x-4)=0
x=√2 或 x=√2+√3 或x=√2-√3
因x>1
所以 x=√2 或 x=√2+√3
当x=√2+√3时, x^2-1=(√2+√3)^2-1=4+2√6
代入原式:
√2+√3+(2+√3)/√(4+2√6)=2√2
√3+(√2+√3)/√(4+2√6)=√2
显然左式大于右式, 所以x=√2+√3也应舍弃
所以 x=√2
由上讨论知, x>1
设 x= 1/sina , a 在第一,二象限
则 x²-1=(1/sina)²-1=(1-sin²a)/sin²a=cos²a/sin²a
1.
当a在第一象限, sina>0, cosa>0
1/sina+(1/sina)/(cosa/sina)=2√2, 1/sina+1/cosa=2√2, sina+cosa=2√2sinacosa
√2/2sina+√2/2cosa=2sinacosa, sinacosπ/4+sinπ/4cosa=sin2a,
sin(a+π/4)=sin2a
0<a<π/2, 0<2a<π, π/4<a+π/4<3π/4
a+π/4=2a, a=π/4
x=1/sin(π/4)=√2
2.
当a在第二象限, sina>0, cosa<0
1/sina+(1/sina)/(-cosa/sina)=2√2, 1/sina-1/cosa=2√2, sina-cosa=2√2sinacosa
√2/2sina-√2/2cosa=2sinacosa, sinacosπ/4-sinπ/4cosa=sin2a,
sin(a-π/4)=sin2a
π/2<a<π, π<2a<2π, 3π/4<a+π/4<5π/4
a-π/4+π=2a, a=3π/4
x=1/sin(3π/4)=√2
综上所述, x=√2
又 x+x/√(x²-1)=x[1+1/√(x²-1)]=2√2>0
所以x>0
所以 x>1
x+x/√(x²-1)=2√2
x/√(x²-1)=2√2-x
x=√(x²-1)*(2√2-x)
x²=(x²-1)(8-4√2x+x²)
x²=8x²-4√2x^3+x^4-8+4√2x-x²
x^4-4√2x^3+6x^2+4√2x-8=0
x^4-√2x^3-3√2x^3+6x^2+4√2x-8=0
x^3(x-√2)-3√2x^2(x-√2)+4√2(x-√2)=0
(x-√2)(x^3-3√2x^2+4√2)=0
(x-√2)(x^3-√2x^2-2√2x^2+4√2)=0
(x-√2)[x^2(x-√2)-2√2(x+√2)(x-√2)]=0
(x-√2)^2(x^2-2√2x-4)=0
x=√2 或 x=√2+√3 或x=√2-√3
因x>1
所以 x=√2 或 x=√2+√3
当x=√2+√3时, x^2-1=(√2+√3)^2-1=4+2√6
代入原式:
√2+√3+(2+√3)/√(4+2√6)=2√2
√3+(√2+√3)/√(4+2√6)=√2
显然左式大于右式, 所以x=√2+√3也应舍弃
所以 x=√2
由上讨论知, x>1
设 x= 1/sina , a 在第一,二象限
则 x²-1=(1/sina)²-1=(1-sin²a)/sin²a=cos²a/sin²a
1.
当a在第一象限, sina>0, cosa>0
1/sina+(1/sina)/(cosa/sina)=2√2, 1/sina+1/cosa=2√2, sina+cosa=2√2sinacosa
√2/2sina+√2/2cosa=2sinacosa, sinacosπ/4+sinπ/4cosa=sin2a,
sin(a+π/4)=sin2a
0<a<π/2, 0<2a<π, π/4<a+π/4<3π/4
a+π/4=2a, a=π/4
x=1/sin(π/4)=√2
2.
当a在第二象限, sina>0, cosa<0
1/sina+(1/sina)/(-cosa/sina)=2√2, 1/sina-1/cosa=2√2, sina-cosa=2√2sinacosa
√2/2sina-√2/2cosa=2sinacosa, sinacosπ/4-sinπ/4cosa=sin2a,
sin(a-π/4)=sin2a
π/2<a<π, π<2a<2π, 3π/4<a+π/4<5π/4
a-π/4+π=2a, a=3π/4
x=1/sin(3π/4)=√2
综上所述, x=√2
追问
您能用简单的设元来做吗?
追答
这还不简单, 三角函数方法是最简单的了
展开全部
你好!
x²-1>0
x>1 或 x<-1
当x< -1时,左边<0 而右边是正数,显然不成立
∴ x > 1
令 x=secu,u∈(0,π/2)
则原方程即 secu + secu / tanu = 2√2
1/cosu + 1/sinu = 2√2
(sinu+cosu)/(sinucosu) = 2√2
令 t = sinu+cosu = √2 sin(u+π/4)
u+π/4∈(π/4,3π/4)
t∈(1,√2]
则 sinucosu = (t² - 1)/2
代入得
2t/(t² - 1) = 2√2
√2 t² - t - √2 = 0
(t - √2)(√2 t - 1) = 0
t = √2 或 t = √2 /2 (舍去)
当 t=√2 即 √2sin(u+π/4) = √2
u+π/4 = π/2
u = π/4
x = secu = √2
x²-1>0
x>1 或 x<-1
当x< -1时,左边<0 而右边是正数,显然不成立
∴ x > 1
令 x=secu,u∈(0,π/2)
则原方程即 secu + secu / tanu = 2√2
1/cosu + 1/sinu = 2√2
(sinu+cosu)/(sinucosu) = 2√2
令 t = sinu+cosu = √2 sin(u+π/4)
u+π/4∈(π/4,3π/4)
t∈(1,√2]
则 sinucosu = (t² - 1)/2
代入得
2t/(t² - 1) = 2√2
√2 t² - t - √2 = 0
(t - √2)(√2 t - 1) = 0
t = √2 或 t = √2 /2 (舍去)
当 t=√2 即 √2sin(u+π/4) = √2
u+π/4 = π/2
u = π/4
x = secu = √2
追问
您能用简单的设元来做吗?
追答
三角换元很简单了,该不会是你没还没学三角函数吧
那就没办法了,暂时还没找到其他更简单的方法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询