一道高等代数题,希望大家帮帮忙,谢谢!
在空间P[x]n中,设变换τ为f(x)→f(x+1)-f(x),τ在基ε(0)=1,ε(i)=[x(x-1)……(x-i+1)]/i!(i=1,2,……,n-1)下的矩阵...
在空间P[x]n 中,设变换 τ 为f(x)→f(x+1)-f(x) , τ 在基ε(0)=1,ε(i)=[x(x-1)……(x-i+1)]/ i! (i=1,2,……,n-1)下的矩阵。
展开
展开全部
求τ的矩阵就是求τ在基上的作用结果, 再表示为基的线性组合.
想不清楚的话就从简单的例子入手:
ε(0)为常值多项式, τ(ε(0)) = 1-1 = 0;
ε(1) = x, τ(ε(1)) = (x+1)-x = 1;
ε(2) = x(x-1)/2, τ(ε(2)) = (x+1)x/2-x(x-1)/2 = x.
一般的, ε(i) = (x(x-1)...(x-i+1))/i!,
τ(ε(i)) = ((x+1)x...(x-i+2))/i!-(x(x-1)...(x-i+1))/i!
= ((x+1)-(x-i+1))x(x-1)...(x-i+2)/i!
= i·x(x-1)...(x-i+2)/i!
= x(x-1)...(x-i+2)/(i-1)!
= ε(i-1).
因此τ(ε(0), ε(1), ε(2),..., ε(n-1)) = (ε(0), ε(1), ε(2),..., ε(n-1))·A.
其中A =
0 1 0 ... 0
0 0 1 ... 0
......
0 0 0 ... 1
0 0 0 ... 0.
想不清楚的话就从简单的例子入手:
ε(0)为常值多项式, τ(ε(0)) = 1-1 = 0;
ε(1) = x, τ(ε(1)) = (x+1)-x = 1;
ε(2) = x(x-1)/2, τ(ε(2)) = (x+1)x/2-x(x-1)/2 = x.
一般的, ε(i) = (x(x-1)...(x-i+1))/i!,
τ(ε(i)) = ((x+1)x...(x-i+2))/i!-(x(x-1)...(x-i+1))/i!
= ((x+1)-(x-i+1))x(x-1)...(x-i+2)/i!
= i·x(x-1)...(x-i+2)/i!
= x(x-1)...(x-i+2)/(i-1)!
= ε(i-1).
因此τ(ε(0), ε(1), ε(2),..., ε(n-1)) = (ε(0), ε(1), ε(2),..., ε(n-1))·A.
其中A =
0 1 0 ... 0
0 0 1 ... 0
......
0 0 0 ... 1
0 0 0 ... 0.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询