已知函数f(x)=x^2㏑x的绝对值,1,求函数f(x)的单调区间;2若关于x的方程f(x)=kx-1有实数解,k取值范围 5
展开全部
(1)f(x)=x²·ln|x|
f'(x)=2xln|x|+x²·1/x
=2xln|x|+x
=x(2ln|x|+1)
当x>e^(-1/2)时,f'(x)>0;
当0<x<e^(-1/2)时,f'(x)<0;
当-e^(-1/2)x<0时,f'(x)>0;
当x<-e^(-1/2)时,f'(x)<0;
于是函数的单调增区间为(-e^(-1/2),0)和(e^(-1/2),+∞);
函数的单调减区间为(0,e^(-1/2))和(-∞,-e^(-1/2)).
(2)关于x的方程f(x)=kx-1有实数解也就是说直线y=kx-1与f(x)的图像有交点,也就是说,直线y=kx-1夹在过点(0,-1)的f(x)的两条切线之间。
设过点(0,-1)的f(x)的切线为y=mx-1,切点为(x0,y0)则
x0(2ln|x0|+1)=m
x0²·ln|x0|=mx0-1
解得x0=±1,m=±1。
于是当k≥1或k≤-1时,关于x的方程f(x)=kx-1有实数解.
f'(x)=2xln|x|+x²·1/x
=2xln|x|+x
=x(2ln|x|+1)
当x>e^(-1/2)时,f'(x)>0;
当0<x<e^(-1/2)时,f'(x)<0;
当-e^(-1/2)x<0时,f'(x)>0;
当x<-e^(-1/2)时,f'(x)<0;
于是函数的单调增区间为(-e^(-1/2),0)和(e^(-1/2),+∞);
函数的单调减区间为(0,e^(-1/2))和(-∞,-e^(-1/2)).
(2)关于x的方程f(x)=kx-1有实数解也就是说直线y=kx-1与f(x)的图像有交点,也就是说,直线y=kx-1夹在过点(0,-1)的f(x)的两条切线之间。
设过点(0,-1)的f(x)的切线为y=mx-1,切点为(x0,y0)则
x0(2ln|x0|+1)=m
x0²·ln|x0|=mx0-1
解得x0=±1,m=±1。
于是当k≥1或k≤-1时,关于x的方程f(x)=kx-1有实数解.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |