已知A={x|x²-x-6<0},B={x2+2x-8>0},C={x|x2-4ax+3a2<0}
已知A={x|x²-x-6<0},B={x²+2x-8>0},C={x|x²-4ax+3a²<0},若(A交B)真包含于C,求实数...
已知A={x|x²-x-6<0},B={x²+2x-8>0},C={x|x²-4ax+3a²<0},若(A交B)真包含于C,求实数a的取值范围。
求详解~~谢蛤~~~ 展开
求详解~~谢蛤~~~ 展开
推荐于2017-09-28
展开全部
x²-x-6<0
(x-3)(x+2)<0
-2<x<3
x²+2x-8>0
(x+4)(x-2)>0
x>2或x<-4
所以A={x|-2<x<3}
B={x|x>2或x<-4}
故A∩B={x|2<x<3}
x²-4ax+3a²<0
(x-a)(x-3a)<0
x1=a x2=3a
要使A∩B包含于C
则应满足a≤2 3a≥3
解得1≤a≤2
(x-3)(x+2)<0
-2<x<3
x²+2x-8>0
(x+4)(x-2)>0
x>2或x<-4
所以A={x|-2<x<3}
B={x|x>2或x<-4}
故A∩B={x|2<x<3}
x²-4ax+3a²<0
(x-a)(x-3a)<0
x1=a x2=3a
要使A∩B包含于C
则应满足a≤2 3a≥3
解得1≤a≤2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询