已知图中AD=BD,AE=EC,三角形ABC的面积是40平方米,求阴影部分面积?
展开全部
∵AD=BD,AE=EC
∴D,E分别是AB,AC的中点
∴DE是△ABC的中线
∴DE平行且等于1/2BC
∴△BDE与△BCE高相等,记为h;
△ADE∽△ABC
∴△ADE的高=1/2△ABC的高
∴△ADE、△BDE、△BCE的高都相等
∴S△ADE=S△BDE
∵S△BDE=1/2DE×h,S△BCE=1/2BC×h
∴S△BDE=1/2S△BCE
∴S△BDE=1/4S△ABC
∴S△BDE=10(㎡)
望采纳
∴D,E分别是AB,AC的中点
∴DE是△ABC的中线
∴DE平行且等于1/2BC
∴△BDE与△BCE高相等,记为h;
△ADE∽△ABC
∴△ADE的高=1/2△ABC的高
∴△ADE、△BDE、△BCE的高都相等
∴S△ADE=S△BDE
∵S△BDE=1/2DE×h,S△BCE=1/2BC×h
∴S△BDE=1/2S△BCE
∴S△BDE=1/4S△ABC
∴S△BDE=10(㎡)
望采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:由题目意思可以得知 点D和点E 是AB和AC的中点,同时过B点做DE的垂线,交ED的延长线与F点,再过A做AG垂直BC交点G,则有:BF = AG / 2 ,DE = BC / 2,那么阴影部分的面积 S阴 = BF * DE * 0.5 = AG * BC * 1 / 8 = 40 / 4 = 10
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
三角形ABE等于三角形BEC,(等底等高)三角形BED也等于三角形AED(等底等高),所以阴影部分面积是整个三角形的四分之一,10平方米,具体过程自己写
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
过E作EF⊥BC,过A作AG⊥BC交DE于H
∴AG//EF
∵AD=BD, AE=EC
∴DE//BC
∵AG//EF
∴HG=DF
∵∠ADE=∠ABC, ∠AED=∠ACB
∵∠A=∠A
∴△ADE∽△ABC
∴AD/AB = DE/BC
∵AD/AB = AD/(AD+BD) = AD/(AD+AD) = 1/2
∴2DE=BC
同理△ADH∽△ABG
∴AG=2AH
∵S△ADE=DE*AH/2,S△ABC=BC*AG/2 = 2DE * 2AH / 2
∴S△ADE = 1/4 * S△ABC = 10
∵S△BCE=BC*EF/2,S△ABC=BC*AG/2 = BC * 2GH /2 = BC * 2EF / 2
∴S△BCE = 1/2 * S△ABC = 20
∴S△BDE = S△ABC - S△ADE - S△BCE = 40 - 10 - 20 = 10
∴AG//EF
∵AD=BD, AE=EC
∴DE//BC
∵AG//EF
∴HG=DF
∵∠ADE=∠ABC, ∠AED=∠ACB
∵∠A=∠A
∴△ADE∽△ABC
∴AD/AB = DE/BC
∵AD/AB = AD/(AD+BD) = AD/(AD+AD) = 1/2
∴2DE=BC
同理△ADH∽△ABG
∴AG=2AH
∵S△ADE=DE*AH/2,S△ABC=BC*AG/2 = 2DE * 2AH / 2
∴S△ADE = 1/4 * S△ABC = 10
∵S△BCE=BC*EF/2,S△ABC=BC*AG/2 = BC * 2GH /2 = BC * 2EF / 2
∴S△BCE = 1/2 * S△ABC = 20
∴S△BDE = S△ABC - S△ADE - S△BCE = 40 - 10 - 20 = 10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询