利用极坐标计算二重积分
1个回答
展开全部
X^2+y^2=<RX 化为极坐标为0≤ρ≤Rcos θ -π/2≤θ≤π/2
∫∫√R^2-X^2-y^2=∫[-π/2≤θ≤π/2] dθ ∫ [0≤ρ≤Rcos θ] √(R^2-ρ^2)ρdρ
=2∫[0≤θ≤π/2] ∫ [0≤ρ≤Rcos θ] √(R^2-ρ^2)ρdρ
令ρ=Rcost 则∫ [0≤ρ≤Rcos θ] √(R^2-ρ^2)ρdρ
=∫ [π/2≥t≥ θ] RsintRcost(-Rsint)dt=R³∫ [θ≤t≤π/2] sin²tdsint=R³[sin³(π/2)-sin³(θ)]/3
=R³[1-sin³(θ)]/3
∫∫√R^2-X^2-y^2=(2/3)R³∫[0≤θ≤π/2] [1-sin³(θ)] dθ=(2/3)R³(π/2-2/3)=2R³(3π-4)/9
∫∫√R^2-X^2-y^2=∫[-π/2≤θ≤π/2] dθ ∫ [0≤ρ≤Rcos θ] √(R^2-ρ^2)ρdρ
=2∫[0≤θ≤π/2] ∫ [0≤ρ≤Rcos θ] √(R^2-ρ^2)ρdρ
令ρ=Rcost 则∫ [0≤ρ≤Rcos θ] √(R^2-ρ^2)ρdρ
=∫ [π/2≥t≥ θ] RsintRcost(-Rsint)dt=R³∫ [θ≤t≤π/2] sin²tdsint=R³[sin³(π/2)-sin³(θ)]/3
=R³[1-sin³(θ)]/3
∫∫√R^2-X^2-y^2=(2/3)R³∫[0≤θ≤π/2] [1-sin³(θ)] dθ=(2/3)R³(π/2-2/3)=2R³(3π-4)/9
更多追问追答
追问
=2∫[0≤θ≤π/2] ∫ [0≤ρ≤Rcos θ] √(R^2-ρ^2)ρdρ
大侠,我不明白,系数2怎么来的,望详细解答
追答
-π/2≤θ≤π/2是堆成,化为0到π/2的积分的2倍即可
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询