
展开全部
解sin(a+π/4)sin(a-π/4)
=1/2{cos[(a+π/4)-(a-π/4)]-cos[(a+π/4)+(a-π/4)]}
=1/2[cosπ/2-cos(2a)]
=1/2[-cos(2a)]
=1/3
即cos(2a)=-2/3
由π/2<a<3π/4
即π<2a<3π/2
即sin2a=-√1-cos²(2a)=-√5/3
cos4a=2cos²(2a)-1=2(-2/3)²-1=-1/9
=1/2{cos[(a+π/4)-(a-π/4)]-cos[(a+π/4)+(a-π/4)]}
=1/2[cosπ/2-cos(2a)]
=1/2[-cos(2a)]
=1/3
即cos(2a)=-2/3
由π/2<a<3π/4
即π<2a<3π/2
即sin2a=-√1-cos²(2a)=-√5/3
cos4a=2cos²(2a)-1=2(-2/3)²-1=-1/9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询