已知函数f(x)=Asin(ωx+φ),(其中A>0, ω>0,0<φ<π/2)的周期为π,且图像上有一个最低点为M(2π/3,-3).
已知函数f(x)=Asin(ωx+φ),(其中A>0,ω>0,0<φ<π/2)的周期为π,且图像上有一个最低点为M(2π/3,-3).(1)求f(x)的解析式;(2)求函...
已知函数f(x)=Asin(ωx+φ),(其中A>0, ω>0,0<φ<π/2)的周期为π,且图像上有一个最低点为M(2π/3,-3).
(1)求f(x)的解析式;(2)求函数y=f(x)+f(x+π/4)的最大值及对应x的值。 展开
(1)求f(x)的解析式;(2)求函数y=f(x)+f(x+π/4)的最大值及对应x的值。 展开
展开全部
函数f(x)=Asin(ωx+φ),(其中A>0, ω>0,0<φ<π/2)
∵f(x)周期为π
∴2π/w=π,∴w=2
∵图像上有一个最低点为M(2π/3,-3).
∴A=3, 4π/3+φ=2kπ+3π/2,k∈Z
∴φ=2kπ+π/6,k∈Z
∵0<φ<π/2取k=0得φ=π/6
∴f(x)=3sin(2x+π/6)
(2) 函数
y=f(x)+f(x+π/4)
=3sin(2x+π/6)+3sin[2(x+π/4)+π/6]
=3sin(2x+π/6)+3sin[π/2+(2x+π/6)]
=3[sin(2x+π/6)+cos(2x+π/6)]
=3√2[√2/2sin(2x+π/6)+√2/2cos(2x+π/6)]
=3√2sin(2x+5π/12)
当2x+5π/12=2kπ+π/2,k∈Z
即x=kπ+π/24,k∈Z时,f(x)取得最大值3√2
∵f(x)周期为π
∴2π/w=π,∴w=2
∵图像上有一个最低点为M(2π/3,-3).
∴A=3, 4π/3+φ=2kπ+3π/2,k∈Z
∴φ=2kπ+π/6,k∈Z
∵0<φ<π/2取k=0得φ=π/6
∴f(x)=3sin(2x+π/6)
(2) 函数
y=f(x)+f(x+π/4)
=3sin(2x+π/6)+3sin[2(x+π/4)+π/6]
=3sin(2x+π/6)+3sin[π/2+(2x+π/6)]
=3[sin(2x+π/6)+cos(2x+π/6)]
=3√2[√2/2sin(2x+π/6)+√2/2cos(2x+π/6)]
=3√2sin(2x+5π/12)
当2x+5π/12=2kπ+π/2,k∈Z
即x=kπ+π/24,k∈Z时,f(x)取得最大值3√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |