2个回答
展开全部
设连通图G有(n+1)个顶点,若每个顶点连出至少两条边,那么此时至少有n+1条边(任意图上所有顶点度数和等于边数的两倍),结论已经成立。否则,那么至少有一个顶点只连出一条边。
不妨设为A,由于去掉这条边AB后不影响其他点的连通性,那么剩下的n个点之间有归纳假设至少有(n-1)条边,所以G至少有n条边。
任意一条边都代表u连v以及v连u。无向图是相对于有向图来说明的,就是说每条边都是双向边,而有向图每条边都是单向边,也就是说只能由一个点指向另一个点。
扩展资料:
有向图 G=(V,E) 中,若对于V中任意两个不同的顶点 x和 y,都存在从x到 y以及从 y到 x的路径。相应地有强连通分量的概念。强连通图只有一个强连通分量,即是其自身;非强连通的有向图有多个强连分量。
一个无向图 G=(V,E) 是连通的,那么边的数目大于等于顶点的数目减一:|E|>=|V|-1,而反之不成立。
如果 G=(V,E) 是有向图,那么它是强连通图的必要条件是边的数目大于等于顶点的数目:|E|>=|V|,而反之不成立。没有回路的无向图是连通的当且仅当它是树,即等价于:|E|=|V|-1。
参考资料来源:百度百科--连通无向图
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询