本小题满分12分)已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2
本小题满分12分)已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2(n=1,2…),a1=1(1)设bn=an+1-2an.(n=1,2…).求证数列{b...
本小题满分12分)已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2
(n=1,2…),a1=1
(1)设bn=an+1-2an.(n=1,2…).求证数列{bn}是等比数列;
(2)设Cn=an/2n(n=1,2…)求证数列{Cn}是等差数列;
(3)求数列{an}的通项公式及前n项和公式。 展开
(n=1,2…),a1=1
(1)设bn=an+1-2an.(n=1,2…).求证数列{bn}是等比数列;
(2)设Cn=an/2n(n=1,2…)求证数列{Cn}是等差数列;
(3)求数列{an}的通项公式及前n项和公式。 展开
2013-04-15
展开全部
1.
∵S(n+1)=4an+2
∴当n≥2时,Sn=4a(n-1)+2
∴S(n+1)-Sn=4an-4a(n-1),
即:a(n+1)=4an-4a(n-1).............(1)
∴a(n+1)-2an=2[an-2a(n-1)],
即:bn=2b(n-1).
∴{bn}是等比数列.
等比数列{bn}的公比是2.
首项b1=a2-2a1,
又S2=4a1+2,a1+a2=4a1+2,
∴a2=3a1+2=5,
∴b1=3.
∴数列{bn}的通项公式是:bn=3*2^(n-1).
2.
由a1=1.S(n+1)=4an+2得,S2=4a1+2=6=a1+a2,所以a2=5
由(1)得数列{a(n+1)-2an}为公比为2,首项为a2-2a1=3的等比数列,
所以a(n+1)-2an=3*2^(n-1)
两边都除以2^(n+1),得
a(n+1)/[2^(n+1)]-an/2^n=3/4
因此数列an/2^n为等差数列.(公差为3/4)
3.
由(2)得数列an/2^n是公差为3/4,首项为a1/2=1/2的等差数列
所以an/2^n=1/2+(n-1)*3/4=(3n-1)/4
所以an=(3n-1)*2^(n-2)
S(n+1)=4an+2=(3n-1)*2^n+2
∴Sn=(3n-4)*2^(n-1)+2....(n≥2)
又S1=1也满足Sn=(3n-4)*2^(n-1)+2
所以
an=(3n-1)*2^(n-2)
Sn=(3n-4)*2^(n-1)+2
∵S(n+1)=4an+2
∴当n≥2时,Sn=4a(n-1)+2
∴S(n+1)-Sn=4an-4a(n-1),
即:a(n+1)=4an-4a(n-1).............(1)
∴a(n+1)-2an=2[an-2a(n-1)],
即:bn=2b(n-1).
∴{bn}是等比数列.
等比数列{bn}的公比是2.
首项b1=a2-2a1,
又S2=4a1+2,a1+a2=4a1+2,
∴a2=3a1+2=5,
∴b1=3.
∴数列{bn}的通项公式是:bn=3*2^(n-1).
2.
由a1=1.S(n+1)=4an+2得,S2=4a1+2=6=a1+a2,所以a2=5
由(1)得数列{a(n+1)-2an}为公比为2,首项为a2-2a1=3的等比数列,
所以a(n+1)-2an=3*2^(n-1)
两边都除以2^(n+1),得
a(n+1)/[2^(n+1)]-an/2^n=3/4
因此数列an/2^n为等差数列.(公差为3/4)
3.
由(2)得数列an/2^n是公差为3/4,首项为a1/2=1/2的等差数列
所以an/2^n=1/2+(n-1)*3/4=(3n-1)/4
所以an=(3n-1)*2^(n-2)
S(n+1)=4an+2=(3n-1)*2^n+2
∴Sn=(3n-4)*2^(n-1)+2....(n≥2)
又S1=1也满足Sn=(3n-4)*2^(n-1)+2
所以
an=(3n-1)*2^(n-2)
Sn=(3n-4)*2^(n-1)+2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-04-15
展开全部
套公式喽。sn+1—sn=an+1求出an与an+1关系代入即可,第三问的以第一二问作为条件和提示,照做即可解决。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询