质数又称素数。是一个大于1的自然数,除了因数只有1和它本身。
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
质数和合数相对。
扩展资料:
质数的性质:
1、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。
合数性质:
1.所有大于2的偶数都是合数。
2.所有大于5的奇数中,个位为5的都是合数。
3.除0以外,所有个位为0的自然数都是合数。
4.所有个位为4,6,8的自然数都是合数。
5.最小的(偶)合数为4,最小的奇合数为9。
6.每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)
参考资料:质数-百度百科
质数就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数又叫做素数。
合数是一个数的约数除了1和它本身,还有其它的约数,叫做合数。
素数又叫质数,最小的素数是2,而最大的素数并不存在。
扩展资料:
一、质数简介:
质数(prime number)又称素数,有无限个。质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。
二、性质:
(1)质数p的约数只有两个:1和p。
(2)初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。
(3)质数的个数是无限的。
(6)若n为大于或等于2的正整数,在n到 之间至少有一个质数。
(8)所有大于10的质数中,个位数只有1,3,7,9。
三、合数简介:
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。
参考资料:
推荐于2017-10-11 · 知道合伙人教育行家
100以内的质数有:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
2.合数是除了质数以外的数,即除了一和它本身以外,还有其他的因数的正整数
3.它们区别在于因数的个数,质数只有2个因数,合数有多于2个因数
4.1既不是质数,也不是合数
你有没有转发下面的故事
没有。列宁说:我们不要理睬他。
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
质数和合数相对。
扩展资料:
质数的性质:
1、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。
合数性质:
1.所有大于2的偶数都是合数。
2.所有大于5的奇数中,个位为5的都是合数。
3.除0以外,所有个位为0的自然数都是合数。
4.所有个位为4,6,8的自然数都是合数。
5.最小的(偶)合数为4,最小的奇合数为9。
6.每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)
你有没有转发下面的故事
广告 您可能关注的内容 |