谁能帮为做一下下面的题、高数类的,谢谢!
展开全部
一。选择题:1。B; 2。C; 3。B; 4。D; 5。A; 6。A;
二。1。x→∞limxsin(1/x)=x→∞lim[sin(1/x)/(1/x)=x→∞lim(1/x)/(1/x)=1,故y=1是其水平渐近线;无
垂直渐近线;
2。面积=πa²;
3。
4。to=π/2;x'=1-cost;y'=sint;z'=2cos(t/2);故x'o=1;y'o=1;z'o=√2;xo=π/2-1;yo=1;zo=2√2;故切线方程为:(x-π/2+1)/1=(y-1)/1=(z-2√2)/√2;
法线方程为:(x-π/2+`)+(y-1)+(√2)(z-2√2)=0
5。交换积分次序得【0,1】∫dx【x²,x】∫f(x,y)dy
6。AB=(1,-6,3),故平面方程为(x-2)-6(y+1)+3(z-2)=0,即x-6y+3z-14=0为所求。
7。一个特解为y*=(1/2)(e^x)cos2x.
三。计算:
1。x→∞lim[ln(1-1/x)/(arctanx-π/2)]=x→∞lim[1/x(x-1)]/[1/(1+x²)]=x→∞lim[(1+x²)/(x²-x)]
=x→∞lim[[(1/x²+1)/(1-1/x)]=1
2。x→0,y→0lim{(x²+y²)/[√(x²+y²+1)-1]}=x→0,y→0lim{(x²+y²)[√(x²+y²+1)+1]/(x²+y²)}
=x→0,y→0lim[√(x²+y²+1)+1]=2;
3。【0,ln2】∫√(e^x-1)dx;令e^x-1=u²,则(e^x)dx=2udu,dx=2udu/(1+u²);
x=0时u=0;x=ln2时u=1
故【0,ln2】∫√(e^x-1)dx=【0,1】2∫u²du/(1+u²)=【0,1】2∫[1-1/(1+u²)]du
=2[u-arctanu]【0,1】=2(1-π/4)2-π/2.
4。【-∞,+∞】∫[1/(9+x²)]dx=(1/3)arctan(x/3)【-∞,+∞】=(1/3)(π/2+π/2)=π/3
5,z=f(x²-y²,e^(xy));令u=x²-y²;v=e^(xy);
则∂z/∂x=(∂f/∂u)(∂u/∂x)+(∂f/∂v)(∂v/∂x)=2x(∂f/∂u)+ye^(xy)(∂f/∂v)
∂z/∂y=(∂f/∂u)(∂u/∂y)+(∂f/∂v)(∂v/∂y)=-2y(∂f/∂u)+xe^(xy)(∂f/∂v)
6。x=te^t;y=t²e^t,故dy/dx=y'=(dy/dt)/(dx/dt)=(2te^t+t²e^t)/(e^t+te^t)=(2t+t²)/(1+t)
故d²y/dx²=(dy'/dt)/(dx/dt)={[(1+t)(2+2t)-(2t+t²)]/(1+t)²}/(e^t+te^t)=(t²+2t+2)/[(1+t)³e^t]
四。求抛物线y=-x²+4x-3及其点(0,-3)和(3,0)的切线所围图形的面积。
解:y'=-2x+4;y'(0)=4;y'(3)=-2
故过M(0,-3)的切线方程为y=4x-3;过N(3,0)的切线方程为y=-2(x-3)=-2x+6;
令4x-3=-2x+6,得6x=9,故x=9/6=3/2;y=-3+6=3,即二切线交点Q的坐标为(3/2,3);
设切线MQ与x轴的交点为P,则P点的坐标为(3/4,0);
所围图形的面积S=△PNQ的面积S₁-抛物线与x轴所围面积S₂+抛物线与切线MQ及与x轴所围
面积S₃.
S₁=(1/2)×(3-3/4)×3=27/8
S₂=【1,3】∫(-x²+4x-3)dx=[-x³/3+2x²-3x]【1,3】=(-9+18-9)-(-1/3+2-3)=4/3
S₃=【0,1】∣∫(-x²+4x-3)dx∣-(1/2)×(3/4)×3=∣-x³/3+2x²-3x∣【0,1】-9/8=4/3-9/8=5/24
故面积S=27/8-4/3+5/24=(81-32+5)/24=54/24=9/4
五。求函数f(x)=1/x在点xo=2处的泰勒展开式,并求其收敛域。
解:f(2)=1/2;f'(x)=-1/x²,f'(2)=-1!/2²;f''(x)=2!/x³,f(2)=2!/2³;
f'''(x)=-3!/xⁿ,f'''(2)=-3!/2⁴;.......;f⁽ⁿ⁾(x)=(-1)ⁿn!/xⁿ⁺¹,f⁽ⁿ⁾(2)=(-1)ⁿn!/2ⁿ⁺¹;
故展开式为1/x=1/2-(1/2²)(x-2)+(1/2³)(x-2)²-(1/2⁴)(x-2)³+......+[(-1)ⁿ/2ⁿ⁺¹](x-2)ⁿ+........
n→∞lim∣R‹n›(x)∣=n→∞lim∣(x-2)∣ⁿ⁺¹/2ⁿ⁺²<n→∞lim[∣x-2∣/2]ⁿ⁺²
由∣x-2∣/2<1,得-2<x-2<2,故得0<x<4,即收敛域为(0,4).
六。计算【c】∮[(e^x)cosy+2y]dx-[(e^x)siny]dy,其中c为负向园周x²+y²=a².
解:∮[(e^x)cosy+2y]dx-[(e^x)siny]dy=【D】-∫∫[(-e^x)siny+(e^x)siny-2]dxdy
=【D】4∫∫dxdy=【-a,a】4∫dy【-√(a²-y²),√(a²-y²)】∫dx
=【-a,a】8∫√(a²-y²)dy=[(y/2)√(a²-y²)+(a²/2)arcsin(y/a)]【-a,a】
=(a²/2)arcsin1-(a²/2)arcsin(-1)=πa²/2
七。计算:
1。【D】∫∫arctan(y/x)dxdy,其中D:1≦x²+y²≦4,x≧0,y≧0.
解:用极坐标:1≦r²≦4,故1≦r≦2;0≦θ≦π/2
【D】∫∫arctan(y/x)dxdy=【0,π/2】∫dθ【1,2】∫arctan(sinθ/cosθ)rdr
=【0,π/2】∫dθ【1,2】∫arctan(tanθ)rdr=【0,π/2】∫θdθ【1,2】∫rdr
=【0,π/2】∫θdθ(r²/2)【1,2】=【0,π/2】(3/2)∫θdθ=(3/2)(θ²/2)【0,π/2】
=(3/2)(π²/8)=3π²/16
2。求球面x²+y²+z²=a²被平面z=a/2,和z=a/4所夹部分曲面的面积
解:所夹部分曲面的面积=2πa(a/2-a/4)=πa²/2
八。这是要证明蓬布面积S=πR²+2πRH+2πR√(R²+h²)=πR[R+H+2√(R²+h²)]在满足帐蓬容积V=πR²H+(1/3)πR²h=(H+h/3)πR²=k的条件下获得最小值时必须满足条件R=(√5)H,h=2H.
证明:S=πR[R+H+2√(R²+h²)];附加条件φ(R,H,h)=(H+h/3)πR²-k=0
作函数F(R,H,h)=πR²+2πRH+2πR√(R²+h²)+λ[(H+h/3)πR²-k]
∂F/∂R=2πR+2πH+2π√(R²+h²)+2πR²/√(R²+h²)+2πRλ[(H+h/3)=0
即有R+H+√(R²+h²)+R²/√(R²+h²)+Rλ(H+h/3)=0.............(1)
∂F/∂H=2πR+πR²λ=0,即有2+Rλ=0,故λ=-2/R............(2)
∂F/∂h=h/√(R²+h²)+Rh/√(R²+h²)+(1/3)Rλ=0
即有3h+3Rh+Rλ√(R²+h²)=0...............(3)
(H+h/3)πR²-k=0.................(4)
四个方程联立求解,即可得证。【我的电脑出问题了,很不好用,你自己求解吧】
二。1。x→∞limxsin(1/x)=x→∞lim[sin(1/x)/(1/x)=x→∞lim(1/x)/(1/x)=1,故y=1是其水平渐近线;无
垂直渐近线;
2。面积=πa²;
3。
4。to=π/2;x'=1-cost;y'=sint;z'=2cos(t/2);故x'o=1;y'o=1;z'o=√2;xo=π/2-1;yo=1;zo=2√2;故切线方程为:(x-π/2+1)/1=(y-1)/1=(z-2√2)/√2;
法线方程为:(x-π/2+`)+(y-1)+(√2)(z-2√2)=0
5。交换积分次序得【0,1】∫dx【x²,x】∫f(x,y)dy
6。AB=(1,-6,3),故平面方程为(x-2)-6(y+1)+3(z-2)=0,即x-6y+3z-14=0为所求。
7。一个特解为y*=(1/2)(e^x)cos2x.
三。计算:
1。x→∞lim[ln(1-1/x)/(arctanx-π/2)]=x→∞lim[1/x(x-1)]/[1/(1+x²)]=x→∞lim[(1+x²)/(x²-x)]
=x→∞lim[[(1/x²+1)/(1-1/x)]=1
2。x→0,y→0lim{(x²+y²)/[√(x²+y²+1)-1]}=x→0,y→0lim{(x²+y²)[√(x²+y²+1)+1]/(x²+y²)}
=x→0,y→0lim[√(x²+y²+1)+1]=2;
3。【0,ln2】∫√(e^x-1)dx;令e^x-1=u²,则(e^x)dx=2udu,dx=2udu/(1+u²);
x=0时u=0;x=ln2时u=1
故【0,ln2】∫√(e^x-1)dx=【0,1】2∫u²du/(1+u²)=【0,1】2∫[1-1/(1+u²)]du
=2[u-arctanu]【0,1】=2(1-π/4)2-π/2.
4。【-∞,+∞】∫[1/(9+x²)]dx=(1/3)arctan(x/3)【-∞,+∞】=(1/3)(π/2+π/2)=π/3
5,z=f(x²-y²,e^(xy));令u=x²-y²;v=e^(xy);
则∂z/∂x=(∂f/∂u)(∂u/∂x)+(∂f/∂v)(∂v/∂x)=2x(∂f/∂u)+ye^(xy)(∂f/∂v)
∂z/∂y=(∂f/∂u)(∂u/∂y)+(∂f/∂v)(∂v/∂y)=-2y(∂f/∂u)+xe^(xy)(∂f/∂v)
6。x=te^t;y=t²e^t,故dy/dx=y'=(dy/dt)/(dx/dt)=(2te^t+t²e^t)/(e^t+te^t)=(2t+t²)/(1+t)
故d²y/dx²=(dy'/dt)/(dx/dt)={[(1+t)(2+2t)-(2t+t²)]/(1+t)²}/(e^t+te^t)=(t²+2t+2)/[(1+t)³e^t]
四。求抛物线y=-x²+4x-3及其点(0,-3)和(3,0)的切线所围图形的面积。
解:y'=-2x+4;y'(0)=4;y'(3)=-2
故过M(0,-3)的切线方程为y=4x-3;过N(3,0)的切线方程为y=-2(x-3)=-2x+6;
令4x-3=-2x+6,得6x=9,故x=9/6=3/2;y=-3+6=3,即二切线交点Q的坐标为(3/2,3);
设切线MQ与x轴的交点为P,则P点的坐标为(3/4,0);
所围图形的面积S=△PNQ的面积S₁-抛物线与x轴所围面积S₂+抛物线与切线MQ及与x轴所围
面积S₃.
S₁=(1/2)×(3-3/4)×3=27/8
S₂=【1,3】∫(-x²+4x-3)dx=[-x³/3+2x²-3x]【1,3】=(-9+18-9)-(-1/3+2-3)=4/3
S₃=【0,1】∣∫(-x²+4x-3)dx∣-(1/2)×(3/4)×3=∣-x³/3+2x²-3x∣【0,1】-9/8=4/3-9/8=5/24
故面积S=27/8-4/3+5/24=(81-32+5)/24=54/24=9/4
五。求函数f(x)=1/x在点xo=2处的泰勒展开式,并求其收敛域。
解:f(2)=1/2;f'(x)=-1/x²,f'(2)=-1!/2²;f''(x)=2!/x³,f(2)=2!/2³;
f'''(x)=-3!/xⁿ,f'''(2)=-3!/2⁴;.......;f⁽ⁿ⁾(x)=(-1)ⁿn!/xⁿ⁺¹,f⁽ⁿ⁾(2)=(-1)ⁿn!/2ⁿ⁺¹;
故展开式为1/x=1/2-(1/2²)(x-2)+(1/2³)(x-2)²-(1/2⁴)(x-2)³+......+[(-1)ⁿ/2ⁿ⁺¹](x-2)ⁿ+........
n→∞lim∣R‹n›(x)∣=n→∞lim∣(x-2)∣ⁿ⁺¹/2ⁿ⁺²<n→∞lim[∣x-2∣/2]ⁿ⁺²
由∣x-2∣/2<1,得-2<x-2<2,故得0<x<4,即收敛域为(0,4).
六。计算【c】∮[(e^x)cosy+2y]dx-[(e^x)siny]dy,其中c为负向园周x²+y²=a².
解:∮[(e^x)cosy+2y]dx-[(e^x)siny]dy=【D】-∫∫[(-e^x)siny+(e^x)siny-2]dxdy
=【D】4∫∫dxdy=【-a,a】4∫dy【-√(a²-y²),√(a²-y²)】∫dx
=【-a,a】8∫√(a²-y²)dy=[(y/2)√(a²-y²)+(a²/2)arcsin(y/a)]【-a,a】
=(a²/2)arcsin1-(a²/2)arcsin(-1)=πa²/2
七。计算:
1。【D】∫∫arctan(y/x)dxdy,其中D:1≦x²+y²≦4,x≧0,y≧0.
解:用极坐标:1≦r²≦4,故1≦r≦2;0≦θ≦π/2
【D】∫∫arctan(y/x)dxdy=【0,π/2】∫dθ【1,2】∫arctan(sinθ/cosθ)rdr
=【0,π/2】∫dθ【1,2】∫arctan(tanθ)rdr=【0,π/2】∫θdθ【1,2】∫rdr
=【0,π/2】∫θdθ(r²/2)【1,2】=【0,π/2】(3/2)∫θdθ=(3/2)(θ²/2)【0,π/2】
=(3/2)(π²/8)=3π²/16
2。求球面x²+y²+z²=a²被平面z=a/2,和z=a/4所夹部分曲面的面积
解:所夹部分曲面的面积=2πa(a/2-a/4)=πa²/2
八。这是要证明蓬布面积S=πR²+2πRH+2πR√(R²+h²)=πR[R+H+2√(R²+h²)]在满足帐蓬容积V=πR²H+(1/3)πR²h=(H+h/3)πR²=k的条件下获得最小值时必须满足条件R=(√5)H,h=2H.
证明:S=πR[R+H+2√(R²+h²)];附加条件φ(R,H,h)=(H+h/3)πR²-k=0
作函数F(R,H,h)=πR²+2πRH+2πR√(R²+h²)+λ[(H+h/3)πR²-k]
∂F/∂R=2πR+2πH+2π√(R²+h²)+2πR²/√(R²+h²)+2πRλ[(H+h/3)=0
即有R+H+√(R²+h²)+R²/√(R²+h²)+Rλ(H+h/3)=0.............(1)
∂F/∂H=2πR+πR²λ=0,即有2+Rλ=0,故λ=-2/R............(2)
∂F/∂h=h/√(R²+h²)+Rh/√(R²+h²)+(1/3)Rλ=0
即有3h+3Rh+Rλ√(R²+h²)=0...............(3)
(H+h/3)πR²-k=0.................(4)
四个方程联立求解,即可得证。【我的电脑出问题了,很不好用,你自己求解吧】
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |