如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=4 求:(1)∠ABC的度数 (2)菱形ABCD的面积
展开全部
答案是120度,连接BD,三角形ABD是等边三角形,因为E为中点,又垂直,等腰三角形三线合一,又AD=AB,所以叫ABD=60度,所以120度
追问
第二问那??
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
①连接BD,可证△ABD是等边三角形,进而得出∠ABC=120°;②可根据勾股定理先求得AC的一半,再求AC的长;③根据菱形的面积公式:两条对角线的积的一半,计算即可.
解:(1)连接BD,
∵E是AB的中点,且DE⊥AB,
∴AD=BD(等腰三角形三线合一逆定理)
又∵AD=AB,
∴△ABD是等边三角形,
∴∠ABD=60°.
∴∠ABC=120°(菱形的对角线互相垂直平分,且每一条对角线平分一组对角
(3)菱形ABCD的面积=3a×a×12=32a2
解:(1)连接BD,
∵E是AB的中点,且DE⊥AB,
∴AD=BD(等腰三角形三线合一逆定理)
又∵AD=AB,
∴△ABD是等边三角形,
∴∠ABD=60°.
∴∠ABC=120°(菱形的对角线互相垂直平分,且每一条对角线平分一组对角
(3)菱形ABCD的面积=3a×a×12=32a2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询