求函数f(x)=4/(2-x^2)的图形的渐近线。详细解,谢谢。
2个回答
展开全部
利用无穷大量与无穷小量的关系,∵当x-->√2, x-->-√2时, (2-x^2)/4-->0 是无穷小量,当x-->√2, x-->-√2时, 函数极限f(x)=4/(2-x^2)是无穷大。
输入值的集合X被称为f的定义域;可能的输出值的集合Y被称为f的值域。函数的值域是指定义域中全部元素通过映射f得到的实际输出值的集合。注意,把对应域称作值域是不正确的,函数的值域是函数的对应域的子集。
计算机科学中,参数和返回值的数据类型分别确定了子程序的定义域和对应域。因此定义域和对应域是函数一开始就确定的强制进行约束。另一方面,值域是和实际的实现有关。
函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标。
从代数角度看,对应的自变量是方程的解。另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。
展开全部
渐近线有水平渐近线,垂直渐近线以及斜渐近线,很容易知道同侧水平渐近线和斜渐近线最多只能有一种
1、先看水平渐近线
lim(x→+∞)f(x)=0,所以右侧有水平渐近线y=0
lim(x→-∞)f(x)=0,所以左侧有水平渐近线y=0
即f(x)有水平渐近线x=0
2、在看垂直渐近线(垂直渐近线一般就是去穷间断点,即lim(x→x0)f(x)=∞时x=x0是垂直渐近线)
该题f(x)有间断点x=-2和x=2
lim(x→-2-)f(x)=-∞,lim(x→-2+)f(x)=+∞,可见x=-2是f(x)的垂直渐近线
lim(x→2-)f(x)=+∞,lim(x→2+)f(x)=-∞,可见x=2也是f(x)的垂直渐近线
3、由1可知,f(x)在左右两侧都有了水平渐近线,所以在左右两侧都没有斜渐近线
综上所述f(x)有水平渐近线y=0和垂直渐近线x=2和x=-2
1、先看水平渐近线
lim(x→+∞)f(x)=0,所以右侧有水平渐近线y=0
lim(x→-∞)f(x)=0,所以左侧有水平渐近线y=0
即f(x)有水平渐近线x=0
2、在看垂直渐近线(垂直渐近线一般就是去穷间断点,即lim(x→x0)f(x)=∞时x=x0是垂直渐近线)
该题f(x)有间断点x=-2和x=2
lim(x→-2-)f(x)=-∞,lim(x→-2+)f(x)=+∞,可见x=-2是f(x)的垂直渐近线
lim(x→2-)f(x)=+∞,lim(x→2+)f(x)=-∞,可见x=2也是f(x)的垂直渐近线
3、由1可知,f(x)在左右两侧都有了水平渐近线,所以在左右两侧都没有斜渐近线
综上所述f(x)有水平渐近线y=0和垂直渐近线x=2和x=-2
追问
嗯,谢谢。不过垂直较近线应该是x=正负根号2吧。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询